a2 United States Patent
Wang et al.

US009426222B2

US 9,426,222 B2
Aug. 23, 2016

(10) Patent No.:
(45) Date of Patent:

(54) SYSTEMS, METHODS AND APPARATUS FOR
MANAGING MACHINE-TO-MACHINE (M2M)
ENTITIES

(75) Inventors: Chonggang Wang, Princeton, NJ (US);
Paul L. Russell, Jr., Pennington, NJ
(US); Guang Lu, Dollard-des-Ormeaux
(CA); Dale N. Seed, Allentown, PA
(US); Lijun Dong, San Diego, CA (US);
Michael F. Starsinic, Newtown, PA
(US)

(73) Assignee: InterDigital Patent Holdings, Inc.,
Wilmington, DE (US)

(*) Notice: Subject to any disclaimer, the term of this

patent is extended or adjusted under 35

U.S.C. 154(b) by 172 days.

(21) Appl. No.: 13/983,220

(22) PCT Filed: Feb. 10, 2012

(86) PCT No.:

§371 (D),
(2), (4) Date:

PCT/US2012/024634

Jan. 10, 2014

(87) PCT Pub. No.: 'WO02012/109531
PCT Pub. Date: Aug. 16,2012

(65) Prior Publication Data
US 2014/0126581 Al May 8, 2014

Related U.S. Application Data

(60) Provisional application No. 61/441,911, filed on Feb.
11, 2011, provisional application No. 61/444,323,
filed on Feb. 18, 2011, provisional application No.
61/452,422, filed on Mar. 14, 2011, provisional
application No. 61/485,631, filed on May 13, 2011,
provisional application No. 61/496,812, filed on Jun.
14, 2011, provisional application No. 61/500,798,
filed on Jun. 24, 2011, provisional application No.

61/501,046, filed on Jun. 24, 2011, provisional
application No. 61/508,564, filed on Jul. 15, 2011.

(51) Int.CL
HO4L 29/08 (2006.01)
HO4W 4/00 (2009.01)
HO4L 12/24 (2006.01)
HO4W 4/02 (2009.01)
(52) US.CL
CPC ... HO4L 67/125 (2013.01); HO4L 41/0233

(2013.01); HO4L 41/0273 (2013.01); HO4L
41/0806 (2013.01); HO4W 4/001 (2013.01);
HO04W 4/005 (2013.01); HO4L 41/06 (2013.01);
HO4W 4/02 (2013.01); Y04S 40/162 (2013.01);
Y04S 40/166 (2013.01)
(58) Field of Classification Search
None
See application file for complete search history.

(56) References Cited

PUBLICATIONS

Yongjing Zhang, Nov. 22, 2010, Procedures for management object
resource, M2M(11) 0040, pp. 1-6.*

(Continued)

Primary Examiner — lan N Moore
Assistant Examiner — Lakeram Jangbahadur

(74) Attorney, Agent, or Firm — Julian F. Santos

(57) ABSTRACT

Systems, methods and apparatus for managing machine-to-
machine (M2M) entities are disclosed. Included herein is a
method that may include implementing one or more manage-
ment layers for managing M2M entities in an M2M environ-
ment. The method may also include using a plurality of man-
agement layers to manage a M2M area network, wherein the
M2M area network may include one or more M2M end
devices. The M2M end devices may include, for example, an
M2M gateway and/or an M2M device. The management lay-
ers may include any of an application management layer,
service management layer, network management layer and a

)
i GATEWAY 1

/130

NETWORK
APPLICATION

/1Bb
=]

NETWORK
APPLICATION

TRANSPORT
NETWORK

2~ SERVICE
" CAPABILTIES

I APPLICATION

US 9,426,222 B2
Page 2

device management layer. The management layers may pro-
vide any of configuration management, fault management,
and performance management of the M2M entities. 42 Claims, 77 Drawing Sheets

US 9,426,222 B2
Page 3

(56) References Cited

PUBLICATIONS

ETSI TS 102 690 v8.1, Machine-to-Machine communications
(M2M) Functional architecture, Nov. 2010, pp. 1-158.*
“Machine-to-Machine communications (M2M); Functional archi-
tecture”, Draft ETSI TS 102 690 V<0.9.6>, (Dec. 2010), 191 pages.
Broadband Forum, “CPE WAN Management Protocol ”, Technical
Report, TR-069 Amendment 3, Protocol Version 1.2, Nov. 2010, 197
pages.

Open Mobile Alliance, “Gateway Management Object Architecture,
Candidate Version 1.0”, OMA-AD-GwMO-V1_0-20101102-C,
Nov. 2, 2010, 12 pages.

Open Mobile Alliance, “Gateway Management Object Technical
Specification, Draft Version 1.07, OMA-TS-GwMO-V1_0-
20101022-D, Oct. 22, 2010, 22 pages.

Open Mobile Alliance, “OMA Device Management Protocol, Draft
Version 2.0”, OMA-TS-DM_ Protocol-V2_ 0-20101028-D, Oct. 28,
2010, 58 pages.

“Extended European Search Report”, EP Application No. 14193582.
5-1870, Mar. 2, 2015, 6 pages.

“International Preliminary Report on Patentability”, International
Application No. PCT/US2012/02463, Jun. 20, 2013, 13 Pages.
“Machine-to-Machine Communications (M2M); Functional Archi-
tecture”, TS 102 690 V0.8.1, Nov. 2010, 158 Pages.
“Machine-to-Machine Communications (M2M); Functional Archi-
tecture”, TS 102 690; V0.10.1, Feb. 2011, 258 Pages.

“Machine-to-Machine Communications (M2M); M2M Service
Requirements”, TS 102 689 V1.1.1, Aug. 2010, 34 Pages.
“Machine-to-Machine Communications (M2M); mla, dla and mld
Interfaces”, TS 102.921V0.2.1, Jan. 2011, 32 Pages.

“Notification of Transmittal of the International Search Report and
the Written Opinion of the International Searching Authority, or the
Declaration”, International Patent Application No. PCT/US2012/
024634, Aug. 17,2012, 12 pages.

“Written Opinion of the International Preliminary Examining
Authority”, International Application No. PCT/US2012/024634,
Apr. 22,2013, 5 pages.

Dudkowski, Dominique, et al., “M2M(11)0076, Remote Entity Man-
agement Principles”, ETSI M2M Submission for Huawei Technolo-
gies Co., Ltd. & NEC Europe Limited, Dec. 22, 2010, S Pages.
Leuca, Meana, “OMA M2M Activities”, ETSI M2M Workshop, Oct.
2010, 10 Pages.

Tseng, Mitch, et al., “Proposed TIA TR-50 Structure”, TR-40/30-10-
05, Mar. 10, 2010, 10 Pages.

Zhang, Yongjing, “M2M(10)0394, Procedures for Management
Object Resource”, ETSI M2M Submission for Huawei Technologies
Co., Ltd., Nov. 22, 2010, 4 Pages.

Zhang, Yongjing, “M2M(10)0394r1, Procedures for Management
Object Resource”, ETSI M2M Submission for Huawei Technologies
Co., Ltd., Nov. 22, 2010, 6 Pages.

Zhang, Yongjing, “M2M(11)0040, Procedures for Management
Object Resource”, ETSI M2M Submission for Huawei Technologies
Co., Ltd. & NEC Europe Limited, Nov. 22, 2010, 6 Pages.

* cited by examiner

US 9,426,222 B2

Sheet 1 of 77

Aug. 23, 2016

U.S. Patent

NOLLYONddY U]

SILMNGVAVD ...
NS

44

NOILYOddY
AHOMLAN

a1/

NOILYOMddY

DY
<F @_H_ Dy w.../cnv a
.
s d ooy’ "
MIOMLIN 7 . F\n v
140dSNYYL e g
WOMIIN - P W O~
Moo/ssv .-~ = T
S e T
s _ P
- vy ;
S 01 08

=

A

US 9,426,222 B2

Sheet 2 of 77

Aug. 23, 2016

U.S. Patent

57 [e e e :
gz 'pgZ g S1000I08d WRCD
N, e |
m . m
ozs || |
O FAN A nlauN § P B0
{ I'aor ‘oop
i EELI SAUTNEYIYS
| JoMn0s3y AAMES /ﬁ)
e o e e e e e e e § e 3G
‘qa7 ‘0ge
3%Z 'G¥Z BYL
e T
qzg 'ogg—~jq _ _ S1000I0dd WWOD
| 250 1
i i
! |
] TTTORG TDOG
queg ‘DRG m w
i d4ul SALEYEYG
GyG Dpg—~H IOMNOSIY AIS |
| 2 |
L SNOLVOTIAdY M9 Lo
ot q5¢ BT

gl 9id
Py DT
YTy ‘DZh~-
‘ _ ‘0g
PRy ‘o8 .
agy DRY ™ | w 09y
Py Obp | EEL 1] SHIHHYAYD |
oy Dpp—+ I2AN0SEY oMA3IS |
I, .
L _sNowvOrideY 1L poy opy
N ‘Gob ‘oof
PEC DPC QYT DT
\,} Bzy
[— 7y 8%
| ST000L0Hd TWROD |
ﬁ.““““““““““““iﬂ
| m
| |
| |
| m
| _
| |
| |
FH“””H“H”H“““L
m SNOLLYD TddY ws‘i n
!!!!!!!!!!!! Bot
N\ 0% ‘0%
by WL 8T

US 9,426,222 B2

Sheet 3 of 77

Aug. 23, 2016

U.S. Patent

NOUVYOZIN

ININIOVNYA
301A3G

(311/ddog)

NOUYHOR AN
ANOMIAN 300

NOUYOIIYA
AN

SNORONCLNY
ALMNO3S

95 8y O

dLH B dve) b Ol AMIACDSIT
MG 1H0ddNS % _ I0IAMIS
e NOLYOINANOD
P LINT TLON3Y SN SILEYYD
A0IAMES
AXO¥d
TUNSON SNOMELN € WNOILIGOY
B HOIVNIO MO4 1NOddNS
WOoTTAL G ENI e
: NOLLYDINAAOD
NOLLNTLIY ViV INLNOY
% ANOLSIH
HIH0NE s
™ NOLLVSNIdNOD | | HIOVNVA ol JOVAEIIN]
INIWIOYNYI - SO HIINA3HIS
NOLLOVSNYYL ONISSIHAOY MS IVNHAINI
ALTHEYHOYIY
B ALMNDIS
INTHTIEVNT | dLH B dyoD
dd¥ MO4 1MOddNS
SILNEVAYD 301ANES (MIANIS/AVMALYS/I0IA30) WZA
Y
NOILINOS
WHOAIV1d INIWOTIAIC INLSONIY
(N3—-0L—ON3 3000 MS WHOALY 1d

US 9,426,222 B2

Sheet 4 of 77

Aug. 23, 2016

U.S. Patent

& i
[e e 1 [e e e 1 o e e e e 1
| | NS | [oNissocad | SNEREER |
oo hL_ousy 3030 |y || KIVRONY 3010 | | | SNOD 30T | | o
/30N _me %E&w&@\mamzmm w W w w M
WZN (L | | | : m YEINE
| TI0AD | W NOWO3Ia | ; 514NO3 | THON
|__Aing 3omac || | | AWAONY_ 3030 | L N 3omag | | ERLEN
| [INOW HoWvas3y || [oNssI00ud | ([avadn | s
mw%mwmﬂm m MHOMLIN w w ATYHONY xmoﬁmzw m HIANCT HEOMLIN M 90t
JINANIS ﬂwm_ INIWIOVNYW SOD || | | | m U
WEN I inawaovewn | ! AIREIE L | | SI4NOD | 1AOW
m 2UN0N/CdOL w w ATYAONY xmoﬁmzw m TYLLING YHOMLIN M HAOMLIN
m 555555 W w SNISSI008d w m 3Vadn M ¥0C
SHICIADNd :w 105 ,.M | 3¥adn | | KIWAONY 198 || | | 9uNOD 08 m
IIAMIS | (90 INFNIOVNYIN | | ML | m | NEINE
HZN | IONVNNORMAD | | RIVMLAOS VOIREIE R m SHNOD m 1HON
| T M (| AWHONY 105 || PLOVING 108 | I0AYIS
3 H H i [} i
| w { [oNssIo0ud || | 34¥0dn |
i -4 ! ! AWHONY L1 9UNOS Sddv | ! oz
SHI0ACHd 1F - SddY ! L) NOWWONddy | [INIW3OWNYA | !
NOLLYOIddY =)l 140 INIWIOVNYH | | ! TR |
WZ N | | JONVWHORd | | w NOUWO313a mzwmﬁumﬁm« I | HIAYT
|- | ! ATYNONY _ _ 4NGD m LHOW
m w w NOLYD TddY w m LN Sdd¥ Mzggﬁ%
m INTWIOVNVA w w INTWIOYNVA w m LHow (L91N0D,) M
| JONVRHOREd Lo dinvd L _NOUVHNILINGD

U.S. Patent Aug. 23,2016 Sheet 5 of 77 US 9,426,222 B2

200
<sciBose> ~ 302
Lt otiribute’ |~ 304
! sols b~ 306
! applications p~ 308
! containers 1~ 310
! groups p~ 312
7 cal4 ; 324
accessRights “lappMgmiObjects |- <mgmObject> 324~
@ 316 , 328
subscriptions | sciMgmtObjects 2 <mgmObject> 3261
,} 318 ; 328
discovery nwkMgmiObjects t—*— <mgmObject> ~ 3281
: vl : £330
accessslotus - devMgmiObjects i—{ <mgmObject> p330~1
.3 227 1 337
mgmitObjects -omaMgmiObjects—>- <mgmObject> 332-1
’ cadh
-IbbaMgmiObjects |- <mgmObjecty h 3341

FIG. 3A

U.S. Patent

Aug. 23, 2016

<sciBosey

e 342

n

344

’

{_ “attribute®

308

30l8

o4t

applications

310

conlainers

Sheet 6 of 77

350

ool?

L attrbute)

groups

P

314

<application>

US 9,426,222 B2

360

aceessiighis

ook

(attribute’

316

accessStatus

7962

subscriptions

308

containers

318

subscriptions

~364

discovery

Peints]

qroups

o240

mgmi0bjs

2386

goeesssigtus

pRrT

momiQbiects

FIG. 38

accessRights

368

geeessSiatus

astid

subscriptions

312

mgmilbiecls

US 9,426,222 B2

Sheet 7 of 77

Aug. 23, 2016

U.S. Patent

986
| slqoiwbu

[suodiosqns |-+

| SnDISEseIon w)m

| sjybnisseson m.w

m sdno.b]

| sIBUDu0D mxm

8¢
4

|_sfaoywbw -
| suondiosqns Tam...

| smpigssanoD Twi

(mnquye, w)diAucgmcmsbumm%mvTﬂz
(_@angump, J-r

&2
N3

JE Old

88
|__sfqouubu
|_suonduosgns -
[Sroigsseo |-
| S1bsse000 |-
[Suonooyddo
T
|__sioupwod |
(mnqupe,

_ sdnosf

08¢
p
| slgpjubu

)

| suondisosqns q

| smpigesenon Tﬁ

— s>
(mnqupe, ﬁ;

| SNyDISEse0D

™

i
A

i

i

i

0ge

fiaA00sip

Big~

| suonduosgns

gig~

| sybnyssadop

Fie—

sdnolb

oLe~

S10UIDIUOD

gLy

| suonpojddp

8OL-

i

Blog

(mnquuo,
Vi

80¢~

EEEEEER

<

BIL 4 <9SDEIS>

US 9,426,222 B2

Sheet 8 of 77

Aug. 23, 2016

U.S. Patent

suonduosgns

Y Ol

45
SMID}SSs9030
&
s3ybiyssanon suoduosgns me
By) A
LBNDAIUBLND S STDISSSA030 1 suonduosqns
9y)% e 14
<BNDAYNDLBD > subiyssensD] [_Smipissseddn suopduosgns
LA A 97 ¢ iy
ﬁ SINgUID, <iSpRuibind>] sybrysss000 SNIDISSSRIOD
VA 4% o V24 A% o
<SI810WnInd> Ligpuwniod> syybiysseson
4%l 44 Ol
(Awqupp, wﬁ <ssepwnind> 1 23GUD, H <ouuylgoiwbu>
ocy U6~ gLy 807~
(" Anqupp, | <{gpyubus>
Biy 0%~
(Angupp, e
PO
00% L0F

b

.

sfqoyubw

US 9,426,222 B2

Sheet 9 of 77

Aug. 23, 2016

U.S. Patent

g 'Ol
suondussgns w
(4
SMYDIGSSBIID 1
g5
s1ubiissaoon w sucndussgns] suonduosgns
By ay- viv-
<BNDAUBLNIS [SMIDISESR000 |~ SNIDISS8800D
S TA 2 A
<SNIDAUNDISP> 514bryssa30D w s1ybinssaaon
vy ¥y~ Ly
m SINGUHD, w <J2jpuwinind> ﬁ_wﬁnmwﬁwmﬂw <ouuylaopubus
T R 47 g BT 80v
(Ainqupp, ﬁ <lqoywbus
18 o g0~
(2nguypo, e
0¥~
Qg%

%

sfqopubuw

US 9,426,222 B2

Sheet 10 of 77

Aug. 23, 2016

U.S. Patent

GOl INIMD
1 Inow
180 1018 Y0 W3O
m L f L7 | (0) s30m3g
HENNE I A WZH
. S-015 won K[ISLI-NON
3y I3 [NouyiswvaiL | [WEETNON e o
W3 1020.104d N INITD
HINIS
/ INOW
N3N S WI4—NON
z-018” ; AN
305 7 AX0dd W3 I 015 A.ov 108
‘ f LNOHLIM
AELD _ S30IA3d
HINTS " \olg Wel 1S3
W3y _
4 nam _
| =206~ e ~— |-g0g _
|
A3 INIMD
905”7 Wy P Lels
SALINOHLAY e zw%
ININIOVNYA e IS 18
7
¢ls WIUN W3ya
00 205’ 057

US 9,426,222 B2

Sheet 11 of 77

Aug. 23, 2016

U.S. Patent

9 Oid
GERT WINa GER W
INTD WY INAID WA INAD W3 INTFID WY
N3O o . IN3MD
na 3d0 3dD "
| HOIVHLO9IN | | HOIVILO9IN | | HOIVHLO9EN | | HOIYILO93N |
]) I})
MO/VILO9IN m HOLYILO9IN
| = =T > _

RIIANAS HAHLD) INERRIERIT)
[HIAUIS NS el o o e e o o o RS T T .iy INFOY dAINS |
MIAIS WY | UINTS WO {30 WO N W

WIHN QR
209~ 508~/
009

U.S. Patent Aug. 23,2016 Sheet 12 of 77 US 9,426,222 B2

0g
D/G-SCL N-SCL 117
D/GREM | NREM |
|
INITIATE SCL
REG.
SCL REGISTRATION REQUEST [mgmiProtocolType .
(VALUE})
@SCL REGISTRATION RESPONSE [mgmiProtocolType
(VALUE)]
SCL
REGISTRATION
TERMINATES
E
FIG. 7A
D/G-SCL N-scL 1] 420
D/GREM i NREM |
INITIATE. UPDATE
T0 SCL
REGISTRATION
UPDATE SCL REGISTRATION [mgmiProtocolType
w :
(VALUE}]
UPDATE SCL
REGISTRATION

FG. 78

U.S. Patent Aug. 23,2016 Sheet 13 of 77 US 9,426,222 B2

: — 180
D/G-SCL N-SCL 1
D/GREM i NREM |
i
INITIATE. UPDATE
10 SCL
REGISTRATION
» UPDATE SCL REGISTRATION REQUEST
"mgmtProtocolType]
UPDATE SCL REGISTRATION RESPONSE 3
ImgmiProtacolType (VALUD)]
UPDATE SCL
REGISTRATION
!
FIG. 7C
D/6-SCL N-scL 1] 800
D/GREM ; REM |
|
INITIATE MANAGEMENT
OBJECT RESOURCE
CREATION
REQUEST [mgmiProtecolType (VALUE)] >
CREATE
MANAGEMENT
CBJECT
RESOURCE
RESPONSE [mgmtProtocolType (VALUE)]

MANAGEMENT OBJECT
RESOURCE CREATION
TERMINATES

FIG. 8

U.S. Patent Aug. 23,2016 Sheet 14 of 77 US 9,426,222 B2

0/6-SCL Vs 1] 30
[/GREM NREM |
i
INITIATE UPDATE
mgmtProtocolTyps
UPDATE [<scl-of-server> /scls/<scl~dg>/ >
mgmiProtocolType;mgmtProtocolType{value)|
UPDATE
<scl-—of~server>
< RESPONSE [mgmiProtocolType(value}]
UPDATE
TERMINATES
! FIG. 9
D/G-SCL 1000
D/GREM] NRLS
|
INITIATE UPDATE
mgmtProtocollype
< UPDATE [<sci~dg>/
mgmitProtecelType:mgmiProtocelTypelvalue) |
LPDATE
<sel-dg>
RESPONSE [mgmiProtocolType(value}] >
UPDATE
TERMINATES

FIG. 10 |

U.S. Patent Aug. 23,2016 Sheet 15 of 77 US 9,426,222 B2

1100
D/G-3CL DISCOVERY
D/GREM SERVER

e

INITIATE SCL

DISCOVFRY

SCL DISCOVERY REQUEST
[mgmiProtocolTypelvalue) |

SCL DISCOVERY RESPONSE

< | mgmtProtocolType{value);LIST]

FILTER
|
CHOSE N-SCL
FROM LIST

FiG. 11

US 9,426,222 B2

Sheet 16 of 77

Aug. 23, 2016

U.S. Patent

¢h Ol

1nsad

L 9UDISUISE303D >

SOLICISIHSS8030

ipquinyaousnbss

sND}8

SNIDISS8a00D

dwipigswi

SNQLED,

AIBAGDSID

NesInossl

(oisanbal

POUIDLE

suondussgns

siubusssoon

dnosb

SIBUIDILOD

suoipoddn

5|08

4

(BIngupD, Y

<ISYHTIS>

US 9,426,222 B2

Sheet 17 of 77

Aug. 23, 2016

U.S. Patent

poylall

| <opei> |

| <assuypl>

| — L 1 "9 1Ynsas P. “ SIS
_ Lmﬂﬁnmgumswmm miqw.! Jaquinnsousnbes w L
| dumgeusn Twl | dwoygewn m........ﬂa
_ mmnmug_somw& Tzw,w |_lynodinose TF!
| quoysanbay Tw‘l | quosanba. msE_..E ——1 $9140}8|{5839D |
} w pOYBUL o
_ pOUIBW e | | sMDigesenan e
| L _ | <acuosgns> p— P
<oounouun> | e
MEEES:] m SAGISID
ynsal
“,&m Lin munm:wmmm JoquinNeauenbes w | suopduosgns —
Rl L | dwoigeun my!ﬂs 7
| dumygeun jﬂ | 50U058] i | s)yBiysseand p——
| Mnecunossl 48 | S
| guoysenbal m,aw | Quowsenbsl -] | dnoib
] W POYBU T.N‘! :
| pouaw T«ﬂ. | | sJsuipiuoD :
L <apmep> b 1
| <oppdn> |
~ Ynsai | sucjooyddo
ynsal r w
isquinyasuanbas ’ 1oqUINNaUANDAS |7 M S8 —
w | dwpigewy b -
L
=l = | G
| quoisenbal T«W. |__Quojsanbs: Tﬂx | <3svg1os>
| TW L___Poyew
}

oA

{ emnquyup,

US 9,426,222 B2

Sheet 18 of 77

Aug. 23, 2016

U.S. Patent

TRIE T owE]
ynsad |
nsal g
-] Jaquinypouanbas |—
JaquinNeouanbes |- (™ duiojsaun
| dunjgewny g
w } | junemunossl Tw l SHII0ISIHESSI0D T
jnesanosal b RGAL
“ WU | | <guoisenbas> Je_ ;
<gHoisenbasy b BIDISSSB00D
| m | squosgns Tw,! | -
| sounouup | w [Kisaoosip Tﬂl
nsa.
ynsad . w | suonduosgns
. 1 JBGUINNBOUANDAS |-
JBqUINNBOUBNDSS |— [dwoyseun, [Syublisseson
| dwpgeuly b g
[| UnN8ounosel e
| junetanoses e L w dna.b
L | | <qosenbes> J
| <quosenbai> lfuL * | susuDLos
_ ot m m 2188p | w et]
fid T | suonooyddo T,WI
1nsal
{ mi.iiii
| Hnsed - { JaqUINN@oUBNbas |- | i L
Jaquinyasuanbas
M QNN 1 W dwipigaun TM& m SINGUD, w!ii
| dwojgewy N
] | jyneonosal J
| junssunosa] | <esngjos>
| | <qlojsenbas> Tt_
<(uossnbes> | X
* | m | <sasujass Twi
ST | 310812 T mﬁ AINgUno,)

US 9,426,222 B2

Sheet 19 of 77

Aug. 23, 2016

U.S. Patent

|
.

A
< T IGERE
HSINE NOLY9313d >
N 3SNOdS3H NOLVOTTHa
< NOLLND3X3 NOLYSTTEd >
18V.S NOWLYOTTId <
ISNOISIY NOLYST g
.
D JSNOJSIY NOLVoaI 130 > WEOANE NOLYOS 1K
[S3M03Y NOMYSIEa
| TINCING
« TSNOCSTY NOLYSS g > L SIS 9/a
1530034 NOUYOT3d < ISNOJSIM NOILYSI1aa
| TTTNOUMYSRNd NOIYOTTEC »
" aNNo]
| 3uv 3030 |
L HaNn Lvm
WINN =
X 10S—N L 105N 105-9/a

US 9,426,222 B2

Sheet 20 of 77

Aug. 23, 2016

U.S. Patent

g1 "9l
< YOV NOUYDIT3C
HSINI NOILY9I T30 o
< ISNOdSIH m NOUYST130
< NOHNDINT NOUYDTH] >
1H¥IS NOWYSIIT30 «
ISNOdSTH NOLY9T1R0
-
N I ICGERE
p JSNOCSIY NOLYOI T30 -
1S3NDIY NOUYDITIC
, - B
< ISNOCSTY NOLYST I
1530034 NOUYOTR0 b
| INIINO SAVLS
8/0
: N
ISNOdSIY NOLYDITI
< 1S3IND3Y NOLV9IT3
e e
¥ 198N L 105N 108-9/4
5oat

US 9,426,222 B2

Sheet 21 of 77

Aug. 23, 2016

Ll 9l
h YO¥ NOUYOTTAC
HSINI4 NOLY93 130 >
»
ISNOCSTY NOWYSTTIa
3
NOILNSAX3 NOWYST130
B
ISNOASTH NOUYOTTIg
W,sm?mﬁw .w
SAYIS 9/0
< ISNOCSTY NOIYSTTI0 L=
1SANDIY NOUYSTTIC >
w
1SANDIN NOUYSI A0
[WIuN
X 108N b I0S-N 105-5/0

U.S. Patent

US 9,426,222 B2

Sheet 22 of 77

Aug. 23, 2016

U.S. Patent

gL i
N YO¥ NOLYOI13d
HSINIY NOLWS3 130 B
o
3SNOdSTH NOILYOTTI0
NOILND3X3 NOUYSITIC >
Mmeme ware]
< 1HYIS NOIY9F T3 ANIIND SAVLS
5/4
< ISNOLSIY NOLVET13d
U I WE0ANT NOUYSTTAC >
| INNINO SINOD
| 9/0 N i
o
JSNOJSIY NOUYOI 130
153N03Y NOUYSITIC >
ETY
X 105N b 0S—N 105-9/0
0087

US 9,426,222 B2

Sheet 23 of 77

Aug. 23, 2016

U.S. Patent

gl 'Oid

AV NCLIVOAT3d

HSINIY NOUYOET3d

16¥1S NOUYIHT3a

ASNOAS3Y NOLYIITR(

1S3N03Y NOWYD3ITIa

ASNOCSEY NOUVOTTEd

1S3N03Y NOHYD3ITIC

SOV NOLYDITIg
NGLYILAILON NovaTaa >
- B
Ma INIING Jm
| SIR0D (.0 ¥0) |
| O TN IWA
3SNOJS3, NOUVSTTI
NOILNJEXT NOLYOI T >
o
ISNOCSTY NOLYSHTTIA
P RNOONT NOLeTEa
=
T IST03 NOUYOT 0 g |
Xy
| . s,
b TOS—N TS50 TG ~{]

US 9,426,222 B2

Sheet 24 of 77

Aug. 23, 2016

U.S. Patent

_A A EICAEREN .
MO @Om«@mmm 1TARD I E
< NOLYOHILON NOIVS a0
NN NolvaTEa B
» FSNGJSTE NGIVSTTa0 o
NOLUDa%d NOY9T 10
< 1HYIS NOLYSTTIC »
ISNOJSIH NOUYDIEC .
> WHOANT NCHY9IT30
ISNOJSIY NOUYSITI0
DTS E I SEREN
SSNOaSIn NoveTa P R S ——
INFING SAVIS @
A SRR NI TG y Lo e
ISNOCSIH NOUYSITIC
NOLVivaud NouveTaa
Mz;m?mm, :JM
' SIN0D |
| O UND IVR
WIHN LERE . ELD
L 108N 007 X 1055 1059 1050

U.S. Patent Aug. 23,2016 Sheet 25 of 77 US 9,426,222 B2

Lo §
o
g i
[Q <y
]
(]
N

[
e
u e
m \ gy
A
N
N
\\
S
o
N —
N\ ™
&
\\ o
Y
|
& !
v \
\
}
o o |
£ m_; |
[Vs &) 5
[08]
f
€ i!
<«
N !
2 /
a3
o ...,J 5
\\ 3
ey e g

U.S. Patent

Aug. 23, 2016

<sciBose>

- tattribute’)

1

sels

1

applications

1

containers

groups

accessRights

subscriptions

discovery

aeeessStatus

Sheet 26 of 77

1

US 9,426,222 B2

o
[
Luin]

K (T rbute)

1

execMode

execPoramiers

gxecSiagritime

execDuration

execResult

execSialus

commands

requestoriD

Lgommandinstance>

FIG. 22A

actoril

U.S. Patent Aug. 23,2016 Sheet 27 of 77

commands

-

‘attribute’)

%

Leommand>

Lugl

|

gxecknable

1

execMode

|

execBaseDelay

execAdditionoiDelay

! exechreguency
1 execNumber

? execResource
1 execSlotus

1 execissuer

? execParometers

FIG. 228

US 9,426,222 B2

2200

U.S. Patent

Aug. 23, 2016

commands

____mm_gm “altribute’)

¥

<pommand>

1

Sheet 28 of 77

ﬂ(*attribute)

|

exectnable

1

sxacMode

execBaseDelay

execAdditionalDelay

execkrequency

sxecNumber

execResource

axacStotus

execlssuer

|

gxecPorometers

subscriptions

1

execRequests

(" commandD)
-i{ execDisoble)
- eecPause)
- execResume)
(" execkesull)

subscriptions

US 9,426,222 B2

2200

FIG. 22C

US 9,426,222 B2

Sheet 29 of 77

Aug. 23, 2016

U.S. Patent

£¢ 9ld
AL
1018
THNBNd ;21opdnpubpDojUKRCD
D100 by d &810pdn
Tanbd £POOJUMOP
. o B
PR S uoisisabyd
e
J £8UIDNY b A
B2UN0OSBHOINS
S|GDUTIODXAD 2945 SPUDLIUIOD

sygowubu

US 9,426,222 B2

Sheet 30 of 77

Aug. 23, 2016

U.S. Patent

PinBad | {81878 WnID08XE — v¥e Ol
[ensspoxe -
| _smpojgosxe -
[Somoseyoens
1BquUINNoaxs
Aouanbaijoaxe
| AbjaQ|puonippyoexe —
fojagasngonxs —] e -
e R
[eiqpugoexe] ;2)0pdnpuUDRDOJUAGD SpUDLILIOD
[owpdn [uosioAPd |
| poojumop | cowopibd |- QWM — sHgouubuw
[0} 74

US 9,426,222 B2

Sheet 31 of 77

Aug. 23, 2016

U.S. Patent

Tainbyd

54818 WIDID JI8X8 |-

[ensspaxe |

| smpjgoexs |-

| sonosayosNs |

| sequinyoexs |

| Aouarbeijooxs |-

| AojpQjouchippyoaxs—

| Abjagasogoexe |

| opopoexa |

| sgouzoaxs |

....... | 230pdnpUBPBOUMOP |-

[ttt* ayppdn

T

«i‘i pDOJUROD

T

gv¢ Old

tll“ SpUDWILICT

m,!ti %8

myt

| eois
B |—{£310panpuUDPBOJUAGH |
| eowabyd] ipOOJUMOD
L endtd e JUOISIOADND

m sawnppibd

mvt

U.S. Patent Aug. 23,2016 Sheet 32 of 77 US 9,426,222 B2

2500
cormmands

L rgtiribute)

T emmand —}
ﬂl{ "atlribute’ :} Jﬁ-{ “attribute’)
™ execEnable I evecknable
1) execMode 1] gxechode
1) execBaselelay il execBasebeloy
u execAdditionalDelay 1] execAdditionalDelay
il exechrequency il execfrequency
il execNumber il execNumber
il execResource 1 execResource
il execStotus il execStotus
u execlssuer 1 execlssuer
| execParameters I execParameters
) <commandinstonce’

FIG. 25A

U.S. Patent Aug. 23,2016 Sheet 33 of 77 US 9,426,222 B2

commands 2500

- attribute)

T Command
O attribute”) {0 tattrbute’)
A execEnable L execEnable
™ exechode ™ exechode
il execBoseDelay) execBaseDelay
1 execAdditionaiDelay) sxecAdditionaiDelay
L exackrequency 1) execFreguency
1 exechumber 1 exechumber
1 execResource 1 execResource
L execStatus I execStatus
L execlssuer ™ execissuer
1 execParameters I execParameters
1 execRequests " attribute j) execRequests

1{ commandl) <request§nstance>mj{ exechisable j

—1{ execDischle) subscriptions i(execPause)

i[execPause) i{ execResume)
i{ execResume | j{ execResult)

I i(execResult)) subscriptions
3 subscriptions 1 subscriptions

FIG. 258

U.S. Patent

Aug. 23,2016 Sheet 34 of 77 US 9,426,222 B2

commands

T gitributet)

%

Leommand>

FIG. 26A

commands

- tottribute’)

%

<command>

subscriptions

HG. 268

U.S. Patent Aug. 23,2016 Sheet 35 of 77 US 9,426,222 B2

2700 2700
commands
iﬂ{ *gtiribute’ j <commondinstonce> k{ “ottribute®)
1] execknable 1] exechnable
1] execMode i execMode
1) execBaseDelay il execBaselelay
ul exechdditionalDelay ik execAdditionalDelay
1) exectrequency L execFrequency
L] execNumber L exechNumber
1 execResource 1 execResource
I execStatus U execStatus
I execissuer I execissuer
1 execParameters il execParameters
[<commandinstances

FIG. 27A FIG. 278

U.S. Patent

Aug. 23, 2016 Sheet 36 of 77

<commaond>

D ottribute’)

— execknable

4 execMode

— execBoseleloy

—execAdditiongiDelay

1 execFrequency

- execNumber

- ayecResource

- execStotus

- execlssuer

—t execParameters

— execRequests

j—(commandil j
-{ execDisable)
—{ execPause)

--{ execResume)

{ execResult)

- subscriplions

FIG. 28A

US 9,426,222 B2

2800

U.S. Patent

2800

Aug. 23, 2016

execRequests

800

<requestinstance>

WO gtiribute’)

%

<requestinsiance>

subscriptions

FIG. 288

0 Tattribute)

— execknable

— execMode

-t execBuaselelay

Sheet 37 of 77

US 9,426,222 B2

800

<requestinstance>

—texechdditionalDelay

-4 execFraquency

1 ayecNumber

- axecResource

- gxecstatus

— execlssuer

—

— execParameters

i(exechlisable :]

]

(" execPouse)
-:-{ execResume j

ﬁ{ execResult)

2
t

- subscriptions

FIG. 28C

_m{ ‘gitribute’)

il

execEnable

il execMode

] execBuseDelay

=

execAdditionaiDelay

1] execrrequency

il execNumber

ul execResouree

al gxecStatus

) execissuer

il execParometers

-L(exectnable)

i{ execDisable)

_3.{ execPause)

-}—(execResume)

j-{ execResult)
1

— subscriptions

FiG. 28D

U.S. Patent Aug. 23,2016 Sheet 38 of 77 US 9,426,222 B2

NETWORK APPLICATION
AND/OR QTHER 1SSUER

CREATE [<mgmtObjs> identifier 3
$,commandiD,optional attributest]
CREATE
RESOURCE
<COMMAND>
<« RESPONSE [{<command> identifier and/or
execEnable identifier}]
FiG. 29A
800
NETWORK APPLICATION N-SCL
NREM
RETREWVE [<command> identifier, >
{attributes, sub—resourcest)
RETREWE
ATTRIBUTES
AND/OR
RESOURCES
RESPONSE [{.cmmmund} identifier, attributes
f
and/or sub-resources|

FIG. 298

U.S. Patent Aug. 23,2016 Sheet 39 of 77 US 9,426,222 B2

NETWORK APPLICATION
AND/OR QTHER ISSUER

DELETE {<command> identifier
or <commands> identifier]

B

DELETE Resourcs
<command> indentifier
CR Resource

<commands>
RESPONSE
-
FIG. 29C
2900
NETWORK APPLICATION N-SCL
NREM |

UPDATE [<commond> identifier, ottribute
(value(s)} and/or sub-resource (value(s)}]

UPDATE Resource
<commuand>

RESPONSE [{<command> identifier, otiribute
(value(s)) and/or sub-resource (value(s)}}]

FIG. 200

US 9,426,222 B2

Sheet 40 of 77

Aug. 23, 2016

U.S. Patent

H46¢ Oid
_
SIS
SSID0N
_ .

R Hsrins3aut] 3sNodSTy

m ynseyoexy M

i NI SUINSIY JH0LS

o
Hsrinsadd] IsNOdSTY
ONYRAOD
300K
R IR E R R Ve
<anuDIsUIsenbal>
EINEL)

_ONIddVN_ONYAWOD |

QIONYWNOD NO (3sve

NOISHIANOD GNYIRIOD

<PUDWILICD> JIN0EXT

[dstnuept sjgouiosxs
g 8jqoUI08%s /<pUbllilicd> | J¥adn

W39/ NOUYOIiddY
1=5/¢ 195N MHOMLIN
667

US 9,426,222 B2

Sheet 41 of 77

Aug. 23, 2016

U.S. Patent

46¢ 'Oid

SLNs3d
S53208d

B

UNSaN08X]

Hsinsadi] ISNOJSTY

ONYIRHOO
EIeE)C

Hsnsaul] ISNOdSY

. NI SUINSEY FH0LS

<@ouD|sufisenba>

EINELW

<

(NOLLND3X3 ONWHROD, 1S3N0EM

| ONIddYA_ONYWAOD |

Qipubwilios NG J35vd
NOISHAANGD ONYIWWOD

<PUDUILGDS FINGEXE

195-9/0

i

ASNOCLS3Y
[eiyljuspt 2|GDUZ0BXS

JO Sqou3oo%a / <punliites> | 1viall

19S—N

NOLLYOddY
HHOMIEN

US 9,426,222 B2

Sheet 42 of 77

Aug. 23, 2016

U.S. Patent

0967 Did m
SINs3y
SSA004d
o
- QT 7 H{sInsaut] 3sNodsTY
LN SIINS3Y OIS
HSimnsayt] ISNOasTY >
NYRHOD .
AN33x3
N (NGILNOEX3 ONYWAOD) Isanbld ¢+
r IByluept aunsayoexs Jo/pun)
Tmmﬁ_:mnm BSNDYOBXE ‘IBIJUSDI BqDSIGOXS THOLS |
EEEEEEEEEEEEE TSTHU6R "BUInEbEExRe so /pun Jsiynuspl
SEND50XE IBLIUSP! S[qhEI(osRs] mwzcammmww
<DIUDIBUISANDAI>
EICER.
L ONIddYA_QNYAWOD |
(ipubilios NG 03Svd
MOISHIANOD ONVIRNOD
LPUDLILOSS 41N34X
JSNOJS I >
[seynuspt 2|qpUILe%®
& 10 3|gDUTI28Xe / {pUDWILInI> | J{YdN
NOLVYO ddY
105-9/4 74 SHOMLIN

US 9,426,222 B2

Sheet 43 of 77

Aug. 23, 2016

U.S. Patent

GNYHNOO
3in03X3

af

HE6¢ Ol |
SLINS3Y
$S300ud
g
B [{srins3ut] 3SNOdS3Y
LN SLINSY 3¥0IS
»-
[is1ins3ul] 3sNOdSTY
77 Tisynuept swinseyoexs Jo/pun |

| saynusp) ssnpgosxs Usyuspl S1qDSIQO9XE OIS

e A D -

[iBilUsp! SUWNSeyIaxs Jo/pun Jsijijusp

<aoupisupsenbss>
EIVERN

(NOILNO3X3 ONYAWOD) 1S3nD3y

108-9/0

| ONIddYW_ONVAINOD |

(IpuUBuRLos NG 45V
NOISHIANGO ONVWROD

LPUDLILIOSS H1 79X

851bj58%8 IBIIUAP] S1GBSIGE%s | SENDIS T

ISNOESTY >
[1o1j3uspl 9jGDUTDRXS
o 10 3{gpU308Xs /<PUDLILIDD> | 1¥0dN
ARIN NOLVOddY
nEY 195N HHOMLIN

US 9,426,222 B2

Sheet 44 of 77

Aug. 23, 2016

U.S. Patent

NOLLNOEX
(NYRRIOO
T4ONVD

ASNOJSIY

(NOLLND3X3

o

195-9/0

ONYWNOO—130NYD) 1S3N0D3Y

162 i
; ASNOAS T >
wl e xm
NSNS JM0IS
oo
L ONIdd¥A_ONYAAOD |
JIPUDWIUIOD NG (35vd
NOISHIANOD ONYWHOD
<PUBLUWE> 31N0IXT
ISNCJISTY >
[ialuspl aiqDSIo8XS
P S[DS[[j58%s / <A5UDIBHIEaNBAIS T A1VadN
WAUN NOILYD TddY
TIS—N HHOMIAN

US 9,426,222 B2

Sheet 45 of 77

Aug. 23, 2016

U.S. Patent

NOIENSIEXS
ONYIWHOO
TAONYD

ASNCJSHY

(NOLNOE

i

(NYRNOO—TIONYD) 1S3N0RY

rec 9id
ASNOCES 3 o
[smojgoexy
L NSNS BH0IS
B
L_ONIdd¥_ONYANOD |
QipuDunUos NO (35vd
NOISHIANCD ONVRNOO
LPUBDUIAICSS FINDEXE
ASNOJS 3 >
B [Jaunuepl sigpsigosxs] Jivadn
[{J9ynuapl 2|g0SII08E)
SEINQUID | JISNOdSIM >
(aigpsi(ooxs)
SANgRLLY A1
&mmﬁmntﬁa UByiuepl <PUBLIWOD> | JATMIIY

NOUYOIddY
135N AHOMIIN

US 9,426,222 B2

Sheet 46 of 77

Aug. 23, 2016

U.S. Patent

MEZ "Old
E R -
miw@ﬁﬁﬁilm
NESIINSIY OIS
ISNOdSTY P
NOLENSIXT
ANYIINOD
S
» {NOWLNOIXT
ONYAROD—350vd) 18araay

L ONIddYi_ONVAROD |

QIPUDWWIs NO (35ve

NOISHIANOD ONVIHROD

<PUDLIIOD> 103X

ISNCAS Y ™
[i81jjuspl 98NDJ0eXS
<15 SEND 035 / LO0UBISUIESNBaIS T 11vadn
AECVAY W3HN NOILVOddv
105-9/4 105N MHOMEIN
o067

US 9,426,222 B2

Sheet 47 of 77

Aug. 23, 2016

U.S. Patent

NOILNOSIXD
INYIRHNOD
A501¥d

ASNOJS3Y

(NOILNDEXS

o

ONYANOD—3SNvd) 1S3N0EY

16 9l
ASNOCSE >
| smpjgoaxg
L NLSINSTY OIS |
B
_ONIddYN_ONYAWOD _|
{IPUDURLIOD NG (4Svd
NOISHAANOD ONYINWNOD
LPUBUUILICOS> 3IN0EXT
ASNOISZ >
B [ounuapl asnpdgoaxs] 31vadn
[{Jaynusp! 9snD4O9XR)
BINQUID | ISNOHS 3 »
{ssnodosxa)
SANGILY AT
.&?ﬁ:mtﬁa JBiuap! <pUDLIWIOD>] JATRIIY

195N

NOUVONddY
AHOMLIN

US 9,426,222 B2

Sheet 48 of 77

Aug. 23, 2016

U.S. Patent

MNOLLNOEX3
(NYRROOD
ARNSAY

ASNOdSIY

(NOILNO3X3

o]

ONYRWOJ-3RNSTY]) 1S3N03Y

W6Z "ol
ASNGASH »
| smogoaxy
LN SIINS FH0IS
g
L_ONIddVV_ONVANOD _|
(JIpubuiticd NG (G35vde
NOISHIANOD CONVYINOO
LPUDRILICSS HINGHXH
ASNGASHY >
Lisljuep! suINsseyIoxs
<5 JUINS3XI8X3 /<anubisupsanbal> | 31vadN
NIUN NOLLYOIddY
TIS—N AHOMLIN

US 9,426,222 B2

Sheet 49 of 77

Aug. 23, 2016

U.S. Patent

NOLNOEXA
(INYRRAOO
AANSTY

ASNOJSIY

(NOILLNDIXT

e

NEC Old
FSNOCES3Y >
| osmoseexy
LN SINSTH A0S
P
|_ONIdYA_ONYAWOD |
Qipunpwilios NG (35vd
NOISHIANCD ONYIRNGD
<PUBWIWIOD> 3iIN03X3
ASNOdS3Y >
< [4eunuspr asnpgoaxa] 31vadn
f(JBijijusp] SWNSEYOX8)
SPQUID] 4SNDdSHY -
{(sunseyaoxs)
SANGILLY 3A3RIY
&mmﬁzntﬁm UBYURP! <PUDWIWOD> | AT
JAGEN NOUYOddY
10S—N HHOMIIN

U.S. Patent Aug. 23,2016 Sheet 50 of 77 US 9,426,222 B2

2800

NETWORK
APPLICATION

UPDATE [<requestinstance> identifier, attribute
(value(s)) and/or sub—resource (volue(s))]

B

UPDATE
RESOURCE
<requestinstance>

RESPONSE [{<requestinstance> identifier,
ottribute {value(s)) and/or sub-resource

(value(s))i]
FIG. 280
NETWORK N-SCL | 2900

APFLICATION " NREM

RETRIEVE [<requestinstance> identifier,
{attribute sub~resourcel]

a

P

>

RETRIEVE

ATTRIBUTES AND/
OR_RESOURCES

RESPONSE [<requestinstance> identifier, ottribute
and/or sub-resource)

-4

FIG. 26P

D3

NETWORK N-ScL | 2300

APPLICATION

DELETE [<requestinstance> identifier]

B

DELETE RESOURCE
<requestinstonce>
» RESPONSE]

FIG. 290 |

US 9,426,222 B2

Sheet 51 of 77

Aug. 23, 2016

U.S. Patent

6 Ol

Laoupisupisenbal>
A04N0SHY J13130

NOLNJEXS
ONYNHOD
TAONYD

ASNOJS Y

(NOILND3E

g

i

ONYIHINOD~TIONYD; 1S3N03Y

(38Nvd 0
ONUNTEXT ATENAEEND
<asupisupssnbaly
JUNCSA AJUNAd

U antt 1 rotal sy T
| ONIddYW ONVAROD

(ipuiilios NO (35vd
NOISHEANDD ONYIKWOD

<PUBUILLOSS HIN3IXS

ASNOdSE

ASNOdSEY

Laynusp) «soupisupsanbai> Jo/pun isjnuep

L o

-

<PUDWILLICD> “Joiiuepl <SPUDWIWO>] 313730

NOUVOddY
AHOMLIN

US 9,426,222 B2

Sheet 52 of 77

Aug. 23, 2016

U.S. Patent

YOE Oid
yanas [Ay L Namo
WO YAD WO YD
< (] >
Py \
m |
m |
! |
m |
m |
i |
m |
¥ = 2 o} I ¥
WINIIS | g C—ONRD v,,m,zmzm%em OWMS » ¥-ORRD p| INIO
ORAY [—ONMAS & ORAS DM
TEND)
AN % P SAUTEVAYD 30IANES oy R
SALNEYAYD 30IAN3S %M SAUHEYAYD IDIANIS
¥9 %H
) {9) AWMILYD WZW va
OO WZH (G) S3IDIAIA WZW
IR 4
Y 0o6e

US 9,426,222 B2

Sheet 53 of 77

Aug. 23, 2016

U.S. Patent

H0% 9ld

HINYES Leg po| LNAMO
e P e
b, &

m |

m |

i |

i |

m |

i |

m |

h 4 h 4
AXONd plu AXOMA WA P AXOM
R pran AER
ENIY £ s SALIEVAYO J0IANES - i WANG

SALHEYEYD F0IAM3S %H SALMNAVAYD 3DIANES
¥9) cmnM
) (9) AVNILYD WOW va
THOD WEN (@) S3IDIAIA WZW
Tk
N Go0E

US 9,426,222 B2

Sheet 54 of 77

Aug. 23, 2016

U.S. Patent

Vi Sid

winas [T PLonano | yaaas ATy P INGno
WO YHO WO YHO | RO YHO WO YHO

X N = g % w, ¢ = > .

m m ! |

m w w |

i w

m | i |

m m m |

| M m |

m m ! |

4 ¥ A 4 4

o . » .

MINIIS | C—ORRY 5| ININGAHCO OWMO | 7—ONRD 5] NI
QMY [—ORRG WA OWMS
EN
WIHN -t s SaLiiavdvo J0AdES i PERN
SILTEYAYD JOIANIS %M SALTEYAYD IDIANIS

¥9 %M
N (9) AYMILYS WZW va
%mmou W () SIDIAIQ WK
Dl
VN oo

US 9,426,222 B2

Sheet 55 of 77

Aug. 23, 2016

U.S. Patent

HiE S
HIANIS HYE R ERT N E S INAMD
Wi | piu > W P g B
& kw mw &
| |
i m w m
| |
m i i]
m m | m
i m | m
m ! | |
\ 4 h 4 A 4 ¥
yIANIS ININGdWOD INFTD
xoid | b M xowd way [b ™ Axoud
W =S e
WIN - s SALTIOVAY0 JOANTS i Al TENIE
SAUTNEVAYD 30IANIS %M SAUNEYAYD IDIAMAS
En%
¥
4
N (9) AYMILYD WZW va
RO WZH () SIDAIA WZK
Dju W
WN 0018

US 9,426,222 B2

Sheet 56 of 77

Aug. 23, 2016

U.S. Patent

Yee "Oid
MIANIS
uinuas | Z-Ha Ponam | g v,
NG YAD g i g AT YAD | lumo-NoN L —~NON
4 o
|
| | |
w M m INZFO
i i i N
w m m YHO—~NON
| |
v \ 4
ot .
WIS | ¢ ORMY | ININOOD OAAO
ORAD [—OR#D
ER)
WINN ot s SALIEVAYD JOANIS 5 = ¢
SALTNEVAYD ADIANIS %M
'R
) {9) AYMILYO WNEW
THOD WEW (@) 3030 WZR
SR 7
¥N [ilsr4S

US 9,426,222 B2

Sheet 57 of 77

Aug. 23, 2016

U.S. Patent

#72E 9id
HIAIAS g el INITO || ¥3AMIS LW
by Bl W3 || Wa-Now [519 NON >
A 3
i
i | !
| M w INAMD
m m m e
| i i ISL3-NON
i { i
v) 4 v
IS g 3 ININOJdAOD
AXOM Pitd AXOHd W3
Sk WIES
AIHN = s SAUTIEVAYD 0ANES - 575 B Y0
SILTNEYAYD JOIANIS %H
¥9
N) (9) AVMIALYD WZW
O WIW () S3IDIA30 WEN
DLW
N 573749

US 9,426,222 B2

Sheet 58 of 77

Aug. 23, 2016

U.S. Patent

A4

YEE Oid
ENECE Z-G ¥ o || S
WO VNG g — gl HO VN0 | [upo-non | —WaN
3 O
|
i i I
| ! | N3O
m M m W
| m m YO-NON
| |
v \ 4 \ 4
L P
NS | CORMI w,hzmzmmxmu OHMS
L) I OWRS
TERR -
WIMN st SATIEVAYD J0NES TN S IT-NON
SAUNEYLYD 30IANIS %M
o /Y3
() (5 40 '9 Q) AVMILYO AW
THOD WEW (@) s331A30
R 4
VN N

US 9,426,222 B2

Sheet 59 of 77

Aug. 23, 2016

U.S. Patent

Hee Old
HIANIS
mmvmmm € . INIS A Leg 10501044 "
WY plud AL ISI3~NON ~N{—1SI3~NON
5 £
|
{ ! !
| | | NI
m m m mmm&mzoz
i ! ! :
| |
v \ 4 4
HANTS Log . INZNOJWOO
AEL) W3dS/W3ua 0
WAHN et s SIMEYAV0 3OS mmm i on ™ jsi3-non
SALHEVAYD FDIANIS %H
A
Y0/v0
™) (D ¥0 ‘0 ‘Q) AVMILYD WIW
| 340D WIW (Q) S30IAIQ Wew
DMWY
¥N G0%E

US 9,426,222 B2

Sheet 60 of 77

Aug. 23, 2016

U.S. Patent

Pe i
- INIFD || M3ANES
| W W3y -
W3 TR -
Y 7\
y m]
| m |
| | | — (SINAIC 3dAL-0
| | ! s _ B{ b MHOMLIN
m M M NOLLYLVdvaY a:aEe
|
| | | -
| i v
¥ ININOJNOD o~ o
HIANTS AXOHd WY (53030 3dAL-Q
Moud W0 < NOLVIVAvGY N DR
piiu IAON NOUYLAYOY S
NN) —SINHAYAYD IDIANIS
SILNEVAYD I0IANIS pid w AL -~ | .
JON AXOdd (SIOAIC 3dAL-(
~SIIINEYAYD I0ANTS o B 2 HHOMLIIN
] y YTEE) VIV WEH
(N) , JOOW INTAIVASNYIL PR,
00 W ~S3UMEVAYD 30IAYIS Naat
D ¥ Py & % B SI0AI0 FdALC
N UL SROMITN
v3 VIMY NZH
55T (9 ¥0 9) AVMILYS WZNW ,

US 9,426,222 B2

Sheet 61 of 77

Aug. 23, 2016

U.S. Patent

H3hHIS WEW

JON

4t Ol

(9 ¥0 9) 30IA3C WZH

AIAMAS OWARD

AN

Pl

HIANES | WO

A¥N

A0 Twwo

339

INANS RO

INATD AG
(YWO—NON}

{,0) IDIAI0 WEW

INATD WO
(YWO~NON)

v

ININOJROD OWMD

IO

ELR

(Q) 301730 WZK

290
|

- INTTD WO
H

¥O

ANFND OHRG

LBttt

|
Ei7¢

¥

US 9,426,222 B2

Sheet 62 of 77

Aug. 23, 2016

U.S. Patent

H3AHIS WEW

JON

9¢ Oid

{9 40 9)
INAT0 WEN

HIAYIS |

HAAMIS OWARD

AN

AN

wa

Ha

YHO

plud

ENGEND
Ha

3329

INIFID WO
{YHO—NON)

(.0) 30IA3Q WZW

IN3NS KO
(YWO—NON)

ININOJROO
DM

W30

LR

Y

(0} 30A30 WZN

J8¢

INANS WA

¥

INFIS OWAD

GEL

L€

vQ

U.S. Patent

Aug. 23, 2016

5700

sisidraaNetworkinfo

T

‘otribute’)

i{

numOfAreaNwk)

®

<areoNwidntanc>

1

subscriplions

FIG. 37

Sheet 63 of 77

3800

LareaNwkinstance>

—{ attribute’)
—{ areaNwkD)
—(oreoNwkType)
——{ workingChannelFreq)
—(addressMode)
—{ sleeplnterval)
—{ sleepDuration)

5LoWPAN

Wik

ZigBee

RFID

subscriplions

——(numOfDevices)

<devicelnstonee>

attochedDevices

groups

—{ MTU)

~{ blockSize)
FIG. 38A

US 9,426,222 B2

U.S. Patent Aug. 23,2016 Sheet 64 of 77 US 9,426,222 B2
3800
BLOWPAN (ipAderPrefix)
mm%f routingMode)
—{ minContextChangeDelay)
—{ maxR&rAdveﬁEsements)
«w{: nﬁnDehyBetweenRasA)
{ maxRaleloylime)
»m{ ianmti\ref\écei,?fetime}
—t hoplimit)
—{ rirSolicitationinterval)
““{i maxRirSoiicitations)
mﬁnoxRtrSoiicimticnintervc%
subscriptions FIG. 38B
<grecNwkinstance> { ‘gtiribules’) 3800
mm{ areawkiD }

u~{: areaNwkiype) —m(ipAddrPrefix)

——{ workingChonneifreq) -{ routingMode)

——{ addressMode) H{ minContexiChangeDelay)

—{ sLoWPAN H{ moxRirAdvertisements)

—{ Wi)} +{ minDelayBetweenRas)

FIG. 38C —(ZigHee)-{ maxRaDelayTime)

— RFID } Y{ tentativeNceLifetime)

subscriptions

U.S. Patent Aug. 23,2016 Sheet 65 of 77 US 9,426,222 B2

<areaNwkDevicelnventory>

S tottribute)

—i—(numBfDevices)

#

<devicelnstance>»

1

subscriplions

¥

gregNwkinstonce>

groups

FIG. 39

U.S. Patent

Aug. 23,2016 Sheet 66 of 77 US 9,426,222 B2
<devicelnstance> 4000
- oftributes)
—{ deviceType)
—{(devieeD)
-{ addressiype)
—{(oreoNwkD)
—{(internolAddress)
——{(externalAddress)
——{ sleepinterval)
—{(sleepDuration)
—{ status)
groups
etsiBattery deviceGroupslist
etsiMemory deviceApplicationsList
steiSensor deviceNeighborslist
subscriptions deviceAreaNwkslist
GLoWPAN
WiFi
RFID
ZigBee
extensions
—(__ WU FIG. 40A

—{(blockSize)

U.S. Patent

Aug,

<devicelnstonce>

23,2016 Sheet 67 of 77

——(gitributes
—-(devicelype
——(devicelD

——(addresslype

—{ areabwkiD

——{ internaiAddress

—{ extemalAddress

———{ sleepinterval
—{ sleepDuration
—(status

m{ maxRtrAdvertEsement&)

P N A WD L W S W S N A NU A W VU N

w{ minDelayBelweenRos)

—{ maxRuleloylime)

~—(tentative?\iceﬁfeﬁme)

~—{ hoplimit)

--{ rirSolicitationinterval)

*{ maxRirSelicitations 3
—(maxRtrSciicimtionEntew@

- groups

US 9,426,222 B2

0ag

— etsiBatiery

deviceGroupsList

— etsiMemory

deviceApplicationsbist

aaa stsiSensor

— subscriptions

deviceNeighborslist

FiG. 408

U.S. Patent Aug. 23,2016 Sheet 68 of 77

etsiAreaNwkDeviceGroup

‘oitributed)

<deviceGroupinstance>

subscriptions

FIG. 41A

etsihreaNwkDeviceGroup

‘nitbutes)

US 9,426,222 B2

B
st
L]
L)

P
pree Y
Laen]
La)

groups
~—{ ‘oftributes’)
- Lgroup>
i subscriptions
subscriptions
FIG. 41B

<deviceGroupinsiance>

gitributes

groupll

grouplype

groupSize

members

A A A A A A

L N N N N A

condition

subseriptions

FIG. 42

U.S. Patent Aug. 23,2016 Sheet 69 of 77 US 9,426,222 B2

4500

etsiGroupMgmtOperolions

j?_{

gtiribules)

X

<opergtioninstance>

i

subscriptions

1

groups

FIG. 43A

4300

etsidreaNwkGroupOperations

mt

attributes)

%

<goperationinstonce>

i

subscriptions

FIG. 438

U.S. Patent Aug. 23,2016 Sheet 70 of 77 US 9,426,222 B2
<operationinstance> 4400
-"~(f “attributed’ j}
—{ groupiD)
“mm(P ——) w«m(: execknoble)
T —{ execDisable)
e) —(execPause)
_mm(execResume) __“<: execriesume ‘)
__m(execSiotus)
—{ operationl))
execResulls

<resultinstance>

““{: devicelD j

{ resultValue)

e execStatus)

subscriptions
-~(aggregatedResult)
subscriptions
subscriptions
execPorameters
groups
FIG. 44A
deviceGroupslist

subscriptions

U.S. Patent Aug. 23,2016

<operationinstonce>

“altnibuted

groupld

engble

disgble

)
)
)
)

A A A A A

resuils

)

Sheet 71 of 77

—{ <resultinstance>)

US 9,426,222 B2

.«(

devicell)

.{

result

—{ aggregatedResult)

subscriptions

FIG. 44B

etsiSensors

ﬁ_{

“attributed

)

¥

<sensorinsionce»

subscriptions

FIG. 45

U.S. Patent Aug. 23,2016 Sheet 72 of 77 US 9,426,222 B2

N
(&2
(=
-]

<sensorinstance>

—(ottributes)
(o)
)
)

—{ sensorType

—(manufacturer

—(__ operations)

—(enable }—{ resut)
—(disable)} resut)

— groups |
containers |
subscriptions
FIG. 46
NETWORK 4200
APPLICATION
r-r————————7—/77 777 7
| |
#7102 : DEVICE :
N-SCL | D-SCL3 APPLICATION | |
I |
| |
L e e e e e |
D-SCL 1 D-SCL 2

FIG. 47

U.S. Patent Aug. 23,2016 Sheet 73 of 77 US 9,426,222 B2

1090

OTHER
NETWORKS

CORE
NETWORK
INTERNET

FIG. 48A

U.S. Patent Aug. 23,2016 Sheet 74 of 77 US 9,426,222 B2

/—’iQZ

116
/ 4
122
120
/
(
124 134
(/ TRANSCEIVER /
SPEAKER/ POWER
MICROPHONE SOURCE
128 118 135
/
| (4
KEYPAD PROCESSOR GPS
CHIPSET
(,1 28 (38
DISPLAY/ — i
TOUCLPAD PERIPHERALS
(/1 30 132
NON—REMOVABLE REMOVABLE
MEMORY MEMORY

FIG. 488

US 9,426,222 B2

Sheet 75 of 77

Aug. 23, 2016

U.S. Patent

<

L b

SHHOMIEN
HIHLO

Oil-

JINMILINI

D87 9id
| o mgmmsmmoz
a7y |/ S0% 14 kwv
ar m
g—I300N
NS9O m NSOS ‘ ani §
m ol qov 17
051~ 8 i~ hwyga
™
MON M DS SAT Sht
1 gy 1 DZY |-
MHOMLIN FH0D m
G—300N
001~ ani §
DOV 17 A%v
N
oL~

US 9,426,222 B2

Sheet 76 of 77

Aug. 23, 2016

U.S. Patent

AN

SHAHOMLAN
AAHIO

Gl

LAN2HINI

asy old

AYMELYD || AvMaLyo
| Nad | ONIAN3S
o1~ o1

Zh i~
AN

n

SMOMIIN TH0D

901~

US 9,426,222 B2

Sheet 77 of 77

Aug. 23, 2016

U.S. Patent

AR

SHHEOMLAN
HAHLO

oLt

LANHE LN

487 Old

| AYMALYO

T

| NOUYIS
| 3sve

50% 1 N%y

e

a1/

AHOMIEN €00

NSV

L AVMELYD

| NOUVIS
35vE

A I

qaow 1/ m%v

B

| NOWVLS

mmw\\

US 9,426,222 B2

1

SYSTEMS, METHODS AND APPARATUS FOR
MANAGING MACHINE-TO-MACHINE (M2M)
ENTITIES

CROSS-REFERENCE TO RELATED
APPLICATIONS

This application is related to and claims the benefit of
and/or priority to (i) United States (“US”) Provisional Patent
Application Serial Number (“Prov. Pat. Appln. Ser. No.”)
61/441,911, filed on 11 Feb. 2011, and entitled “Enhanced
Gateway-Based Machine-To-Machine (M2M) Device Man-
agement™; (i) U.S. Prov. Pat. Appln. Ser. No. 61/496,812,
filedon 14 Jun. 2011, and entitled “Data Model For Managing
M2M Area Networks and M2M Devices behind the M2M
Gateway”; (iii) U.S. Prov. Pat. Appln. Ser. No. 61/500,798,
filedon 24 Jun. 2011, and entitled “Data Model For Managing
M2M Area Networks and M2M Devices behind the M2M
Gateway”; (iv) U.S. Prov. Pat. Appln. Ser. No. 61/444,323,
filed on 18 Feb. 2011, and entitled “Machine-To-Machine
(M2M) Remote Entity Management™; (v) U.S. Prov. Pat.
Appln. Ser. No. 61/452,422, filed on 14 Mar. 2011, and
entitled “Machine-To-Machine (M2M) Remote Entity Man-
agement™; (vi) U.S. Prov. Pat. Appln. Ser. No. 61/485,631,
filed on 13 May 2011, and entitled “Remote Entity Manage-
ment for Machine-to-Machine (M2M) Communications”;
(vii) U.S. Prov. Pat. Appln. Ser. No. 61/501,046, filed on 24
Jun. 2011, and entitled “Remote Entity Management for
Machine-To-Machine (M2M) Communications™; and (viii)
U.S. Prov. Pat. Appln. Ser. No. 61/508,564, filed on 15 Jul.
2011, and entitled “Remote Entity Management for Machine-
To-Machine (M2M) Communications”. Each of the above-
mentioned US Prov. patent applications is incorporated
herein by reference.

BACKGROUND

1. Field

This application is related to communications, and in par-
ticular, to machine-to-machine (“M2M”) communications.

2. Related Art

Machine-to-machine (“M2M”) communication refer to a
category of communications carried out by, between and/or
among devices, referred to as machines, adapted to send,
receive or exchange, via such M2M communications, infor-
mation for performing various applications (“M2M applica-
tions”), such as smart metering, home automation, eHealth
and fleet management. In general, execution of the various
applications, and in turn, the M2M communications attendant
to such execution are carried out by the machines without
necessitating human intervention for triggering, initiating
and/or causing origination of the M2M communications.
Understandably, successful implementation and proliferation
of the M2M applications is likely dependent upon industry-
wide acceptance of standards that ensure (e.g., define require-
ments for ensuring) inter-operability among the various
machines, which may be manufactured and operated by vari-
ous entities.

BRIEF DESCRIPTION OF THE DRAWINGS

A more detailed understanding may be had from the
Detailed Description below, given by way of example in
conjunction with drawings appended hereto. Figures in such
drawings, like the detailed description, are examples. As
such, the Figures and the detailed description are not to be
considered limiting, and other equally effective examples are

10

15

20

25

30

35

40

45

50

55

60

65

2

possible and likely. Furthermore, like reference numerals in
the Figures indicate like elements, and wherein:

FIG. 1A-1C are block diagrams illustrating an example of
a system in which one or more embodiments, including those
directed to Machine-to-Machine (“M2M”) communications
and/or operations, may be implemented or otherwise carried
out;

FIG. 2 is a block diagram illustrating an example set of
logical management layers defining a functional architecture
for performing remote entity management (“REM”);

FIG. 3A is a block diagram illustrating an example
resource structure framework for provisioning a SCL with a
resource structure in accordance with a set of management
layers and functions thereof;

FIG. 3B is a block diagram illustrating an example
resource structure framework for provisioning a SCL with a
resource structure in accordance with a set of management
layers and functions thereof;

FIG. 3C is a block diagram illustrating an example
resource structure framework for provisioning a SCL with a
resource structure in accordance with a set of management
layers and functions thereof;

FIG. 4A is a block diagram illustrating an example
resource structure framework for provisioning an SCL with a
management objects (“mgmtObjs™) resource;

FIG. 4B is a block diagram illustrating an example
resource structure framework for provisioning an SCL with a
management objects (“mgmtObjs™) resource;

FIG. 5 is a block diagram illustrating a diagram of a client-
server model for performing xREM;

FIG. 6 is a block diagram illustrating a tunnel-based
approach to support xREM using multiple different manage-
ment protocols;

FIGS. 7A-7C are flow diagram illustrating example flows
700, 730 and 760, respectively, for determining a type of
management protocol to use for REM;

FIG. 8 is a message flow diagram illustrating procedures
for negotiating and/or informing devices a type of manage-
ment protocol for xREM;

FIG. 9 is a message flow diagram illustrating procedures
for negotiating and/or informing devices a type of manage-
ment protocol for xREM;

FIG. 10 is a message flow diagram illustrating procedures
for negotiating and/or informing devices a type of manage-
ment protocol for xREM;

FIG. 11 is a message flow diagram illustrating procedures
for negotiating and/or informing devices a type of manage-
ment protocol for xREM;

FIG. 12 is an example structure of the resource accessHis-
tories;

FIG. 13 is an example structure for resource accessHisto-
ries structured based on “method”;

FIG. 14 is an example structure for resource accessHisto-
ries—structured based on “method” and requestorID;

FIG. 15 is a message flow diagram of procedures for man-
agement authority delegation (delegator-initiated);

FIG. 16 is an example message flow diagram for manage-
ment authority delegation (device-initiated);

FIG. 17 is an example message flow diagram of manage-
ment authority delegation (device-initiated to grantee
directly);

FIG. 18 is an example message flow diagram for manage-
ment authority delegation (grantee-initiated);

FIG. 19 is an example message flow diagram for manage-
ment authority delegation (gateway as a proxy);

FIG. 20 is an example message flow diagram for manage-
ment authority delegation (device-to-gateway delegation);

US 9,426,222 B2

3

FIG. 21 illustrates a diagram of an example procedure for
management authority delegation;

FIGS.22A-22C are block diagrams illustrating an example
structure of a resource command;

FIG. 23 is ablock diagram illustrating an example structure
for a resource command,;

FIGS. 24 A-B are a block diagrams illustrating an example
structure for resource command;

FIGS.25A-25B are block diagrams illustrating an example
structure for resource commands;

FIGS.26A-26B are block diagrams illustrating an example
structure for resource commands;

FIGS.27A-27B are block diagrams illustrating an example
structure of resource commands;

FIGS.28A-28B are block diagrams illustrating an example
structure of a resource command;

FIG. 28C-28D are block diagrams illustrating an example
structure of a resource command instance;

FIG. 29A-29R are message flow diagrams illustrating
example message flows for XREM of resource commands;

FIG. 30A is a block diagram illustrating an example archi-
tecture for managing D-type ETSIM2M Devices viaan M2M
GW (G") by leveraging OMA GwMO “transparent” mode;

FIG. 30B is a block diagram illustrating an example archi-
tecture of ETSI M2M xREM;

FIG. 31A is a block diagram illustrating an example archi-
tecture for leveraging OMA GwMO1.0;

FIG. 31B is a block diagram illustrating an example archi-
tecture of XREM;

FIG. 32A is a block diagram illustrating an example archi-
tecture for leveraging OMA GwMO1.0;

FIG. 32B is a block diagram illustrating an example an
architecture of ETSI M2M xREM;

FIG. 33A is a block diagram illustrating an example archi-
tecture for leveraging OMA GwMO1.0;

FIG. 33B is a block diagram illustrating an example archi-
tecture of ETSI M2M xREM according to embodiments of
the present disclosure;

FIG. 34 is a block diagram illustrating an example of a
GW-based device management leveraging OMA GwMO;

FIG. 35 is a block diagram illustrating an example archi-
tecture for partially tight integration of OMA DM and M2M
GW;

FIG. 36 is a block diagram illustrating an example archi-
tecture for loose integration of OMA DM and M2M GW;

FIG. 37 is a block diagram illustrating an example resource
structure for an etsiAreaNwklInfo;

FIG. 38A is a block diagram illustrating an example
resource structure for a areaNwklInstance;

FIG. 38B is a block diagram illustrating an example
resource structure for a sub-resource descriptions for 6L.LoW-
PAN for the areaNwkInstance of FIG. 38A;

FIG. 38C is a block diagram illustrating an example
resource structure for an areaNwkInstance;

FIG. 39 is a block diagram illustrating an example resource
structure for a etsiAreaNwkDevicelnventory;

FIG. 40A is a block diagram illustrating an example
resource structure for a devicelnstance;

FIG. 40B is a block diagram illustrating an example
resource structure for a devicelnstance;

FIG. 41A is a block diagram illustrating an example
resource structure for etsiAreaNwkDeviceGroup;

FIG. 41B is a block diagram illustrating an example
resource structure for a etsiAreaNwkDeviceGroup;

FIG. 42 is a block diagram illustrating an example resource
structure for deviceGrouplnstance;

10

15

20

25

30

35

40

45

50

55

60

65

4

FIG. 43A is a block diagram illustrating an example
resource structure for a etsiGroupMgmtOperations;

FIG. 43B is a block diagram illustrating an example
resource structure for a etsiareaNwkGroupOperations;

FIG. 44A is a block diagram illustrating an example
resource structure for a operationlnstance;

FIG. 44B is a block diagram illustrating an example
resource structure for a operationlnstance;

FIG. 45 is a block diagram illustrating an example resource
structure for an etsiSensor;

FIG. 46 is a block diagram illustrating an example resource
structure for a sensorlnstance;

FIG. 47 is a block diagram of example architecture of a
system for performing xREM;

FIG. 48A is a diagram of an example communications
system in which one or more disclosed embodiments may be
implemented;

FIG. 48B is a system diagram of an example wireless
transmit/receive unit (WTRU) that may be used within the
communications system illustrated in FIG. 48A;

FIG. 48C is a system diagram of an example radio access
network and an example core network that may be used
within the communications system illustrated in FIG. 48A;

FIG. 48D is a system diagram of another example radio
access network and an example core network that may be
used within the communications system illustrated in FIG.
48A; and

FIG. 48E is a system diagram of another example radio
access network and an example core network that may be
used within the communications system illustrated in FIG.
48A.

DETAILED DESCRIPTION
Example System Architecture

FIGS. 1A-1C are block diagrams illustrating an example of
a system 10 in which one or more embodiments may be
implemented or otherwise carried out. Such embodiments
may include, for instance, embodiments directed to Machine-
to-Machine (“M2M”) communications and/or operations,
including managing M2M remote entities, such as M2M
applications, M2M service capabilities (“SCs”), M2M area
networks, M2M gateways and M2M devices.

The system 10 may be configured in accordance with and/
orimplemented using one or more architectures; any of which
may be based on and/or configured in accordance with vari-
ous standards. These standards may include those directed to
M2M communications and/or operations, such as, for
example, draft technical specification (“T'S”) promulgated by
the FEuropean Telecommunications Standards Institute
(“ETSI”) entitled “Machine-to-Machine (M2M) Communi-
cations; Functional Architecture” and referred to as “ETSI TS
102 690.” Other examples may include standards those pro-
mulgated by the 3rd Generation Partnership Project
(“3GPP”) and/or 3rd Generation Partnership Project 2
(“3GPP2”), including those relating to Machine-Type Com-
munications (“MTC”), such as, for example, 3GPP TS
22.368, entitled “Technical Specification Group Services and
System Aspects; Service requirements for Machine-Type
Communications (MTC).” Both of'the ETSI TS 102 690 and
the 3GPP TS 22.368 are incorporated herein by reference.
The architecture(s) of the system 10 may be in accordance
with other standards, as well.

The system 10 may include a devices domain 12, a net-
works domain 14 and a network applications domain 16. The
network applications domain 16 may include M2M network

US 9,426,222 B2

5

applications 184, 185. These M2M network applications 18a,
185 may be stored, executed and/or hosted on respective host
devices (not shown). Alternatively, the M2M network appli-
cations 18a, 185 may be stored, executed and/or hosted on the
same host device (also not shown). The host device(s) may
include one or more servers; including, for example, a host-
application server, and may be deployed in one or more
general or specialty purpose computers, personal computers,
mainframes, minicomputers, server-type computers and/or
any a processor-based platform that operates on any suitable
operating system and that is capable of executing software.
The host device(s) may include a number of elements, which
may be formed in a single unitary device and concentrated on
asingle node; serving, client, peer or otherwise. Alternatively,
the elements of the host device(s) may be formed from two or
more separate devices, and as such, may be distributed among
a plurality of nodes; serving, client, peer or otherwise.

The networks domain 14 may include access and/or core
(“access/core”) networks 20 and a transport network 22. The
access/core networks 22 may be, for example, a network
configured for communication in accordance with one or
more protocols for (i) digital subscriber line technologies
(collectively “xDSL”), (ii) hybrid-fiber-coax (“HFC”) net-
works, (iii) programmable logic controllers (“PLC”), (iv)
satellite communications and networks, (v) Global System
for Mobile telecommunication (“GSM”)/Enhanced Data
GSM Environment (“EDGE”) radio access networks (“GER-
ANs”), (vi)_Universal Mobile Telecommunication System
(“UMTS”) Terrestrial Radio Access Networks (“UTRANs”),
(vii) evolved UTRANSs (“eUTRANs”), (viii) wireless local
area networks (“WLAN”), Worldwide Interoperability for
Microwave Access (“WiMAX”), and the like. Details of
example access and/or core networks, which may be repre-
sentative of the access and/or the core networks 20, are
described below with respect to FIGS. 48A-48E. Details of
example transport networks, which may be representative of
the transport network 22, are also described below with
respect to FIGS. 48A-48E.

The access/core networks 20 may also provide connectiv-
ity in accordance with the Internet Protocol (“IP”) suite. The
access/core networks 20 may provide connectivity in accor-
dance with other communication protocols, as well. In addi-
tion, the access/core networks 20 may provide service and
network control functions, interconnection with other net-
works, and roaming services. By way of example, the access/
core networks 20 may be networks configured for communi-
cation in accordance with protocols promulgated by the
3GPP, ETSI Telecommunications and Internet converged
Services and Protocols for Advanced Networking (“TIS-
PAN”) and protocols promulgated by 3GPP2.

The access/core network 20 may include an M2M server
244, and the transport network 22 may include M2M servers
24b, 24c. Each of the M2M servers 24a-24¢ may be owned,
maintained and/or operated by respective service providers.
For example, the M2M server 24a may be owned, maintained
and/or operated by a wireless (e.g., cellular) telecommunica-
tions service provider, whereas the M2M servers 245, 24c¢
may be owned, maintained and/or operated by other service
providers. In some instances, ownership, maintenance and/or
operation of each of first, second and third M2M servers
24a-24c¢ may be split among two or more providers.

The M2M servers 24a-24¢ may include or be configured to
include respective network service capability layers (“N-
SCLs”) 26a-26¢ and respective network communication pro-
tocol stacks 28a-28¢ (FIG. 1B). The N-SCLs 26a-26¢ may
include respective M2M SCs (“N-SCs”) 30a-30c¢ and accom-
panying resource structures 32a-32¢ (FIG. 1B).

10

15

20

25

30

35

40

45

50

55

60

65

6

The device domain 12 may include M2M devices 34a-34g,
M2M gateways 36a, 365, and M2M area networks 38a, 385.
The M2M devices 34a-34g may include respective M2M
applications (“DAs”) 40a-40/ and respective network com-
munication protocol stacks 42g-42g. Some of the M2M
devices 34a-34g, namely, the M2M devices 34a-34d (here-
inafter “Ds 34a-344” or “D-type devices 34a-34d”) may
include or be configured to include respective SCLs (“D-
SCLs”) 44a-44d. The D-SCLs 44a-44d may include or be
configured to include respective SCs (“D-SCs”) 46a-46d and
accompanying resource structures 48a-484 (FI1G. 1B).

The M2M devices 34e-34g (hereinafter “D’s 34e-34g” or
“D'-type devices 34e-34g”) lack D-SCLs. The Ds 34a-34d
may differ from the D' 34e-34g in other ways, as well. For
example, the D’s 34e-34f may be subject to resource con-
straints, such as processing power and memory limitations,
whereas the Ds 34a-34d might not be subject to such resource
constraints. Alternatively and/or additionally, the D’s 34e-
34¢ may include or be configured to include functionality
different from the D-SCLs 44a-444.

The M2M gateways 364, 365 may include or be configured
to include respective M2M applications (“GAs™) 50a, 505,
respective network communication protocol stacks 52a, 525
and respective SCLs (“G-SCLs”) 54a, 54b (FIG. 1). The
G-SCLs 54a, 545 may include or be configured to include
respective SCs (“G-SCs”) 56a, 566 and accompanying
resource structures 58a, 585 (FIG. 1B).

The M2M area networks 38a, 385 may communicatively
couple to the M2M gateways 36a, 365 and other M2M gate-
ways (not shown), if any. The M2M area networks 38a, 385
may include M2M devices (not shown) in addition to the D
34d and the D’s 34e-34g. These additional M2M devices may
be D-type or D'-type devices. Each of the M2M area networks
38a, 385 may be configured using a mesh and/or peer-to-peer
architecture, for example.

Communication links communicatively coupling the D
34d and D' 34e together and/or among D 34d, D' 34e and/or
neighboring M2M devices of the M2M area network 38a may
be wired and/or wireless. Communication links communica-
tively coupling the D’s 34f, 34g together and/or among D’s
34f, 34g and/or neighboring M2M devices of the M2M area
network 385 may be wired and/or wireless, as well.

Communication links communicatively coupling the D
34d, D' 34e and other M2M devices of the M2M area network
38a to the M2M gateway 364 along with the communication
links communicatively coupling the D’s 34/, 34g and other
M2M devices of the M2M area network 386 to the M2M
gateway 36b may be wired and/or wireless. Each of these
communications links may be defined in accordance with a
proprietary interface, a standard interface and/or an open
interface. Alternatively, the communications links may be
defined as a reference point, such as, for example, a dla
reference point. Details of an example dla reference point,
which may be representative of such dla reference point, may
be found in the ETSI TS 102 690.

The M2M gateway 36a, M2M gateway 365 and Ds 345-
34¢ and D 34a may communicatively couple with the M2M
servers 24a, 24b and 24c, respectively, via wired and/or wire-
less communications links. These communications links may
be defined in accordance with a proprietary interface, a stan-
dard interface and/or an open interface. Alternatively, the
communications links may be defined as a reference point,
such as, for example, a mla reference point. Details of an
example mla reference point, which may be representative of
such mla reference point, may be found in the ETSI TS 102
690.

US 9,426,222 B2

7

Communication links communicatively coupling the
M2M network application 18a with M2M server 24a and
communicatively coupling communicatively coupling the
M2M network application 185 with M2M servers 245, 24¢
may be wired and/or wireless. Each of these communication
links may be defined in accordance with a proprietary inter-
face, a standard interface and/or an open interface. Alterna-
tively, the communications links may be defined as a refer-
ence point, such as, for example, a mla reference point.
Details of an example mla reference point, which may be
representative of such mla reference point, may be found in
the ETSI TS 102 690.

Communications between the DAs 40a-40d4 and D-SCLs
44a-44d, respectively, of the Ds 34a-34d may be carried out
using mla reference point. The dla and mla reference points
may provide a uniform interface between the M2M network
application 1856 and DAs 40a-40e, and between the M2M
network application 18a and DAs 40/-40g.

Although two M2M gateways and eight M2M devices are
shown in FIG. 1, the device domain 12 may include more or
fewer M2M gateways and more of fewer M2M devices. In
practice, the device domain 12 is likely to have many M2M
devices and many M2M gateways. Additionally and/or alter-
natively, the system 10 may include more or fewer M2M
servers, more or fewer M2M network applications and more
or fewer M2M area networks.

Each of the M2M area networks 38a, 386 may be, for
example, a network configured for communication in accor-
dance with a personal area network protocol, such as Institute
of Institute of Electrical and Electronics Engineers (“IEEE”)
802.15 x, Zigbee, Bluetooth, Internet Engineering Task Force
(“IETF”) Routing Over Low power and Lossy networks
(“ROLL”), International Society of Automation (“ISA”)
Wireless Systems for Industrial Automation: Process Control
and Related Applications (“ISA100.11a), and the like. The
M2M area networks 38a, 385 may be configured in accor-
dance with other network protocols, such as, for example,
described below with respect to FIGS. 48A-48E.

Referring now to FIG. 1C, each of the N-SCs 304-30¢ may
include or be configured to include an application enablement
capability (“AE”); a generic communication capability
(“GC”); a reachability, addressing and repository capability
(“RAR”); a communication selection capability (“CS”); a
remote entity management capability (“REM™); a security
capability (“SEC”); a history and data retention capability
(“HDR”); a transaction management capability (“TM”); an
interworking proxy capability (“IP”), and a telecom operator
exposure capability (“TOE”); each of which may be con-
nected to a routing function for passing information (e.g.,
from processed messages) from one capability to another.
Each of the N-SCs 30a-30¢ may also include a manager for
scheduling internal software, for managing an operating sys-
tem interface, etc.

Each ofthe G-SCs 564, 565 and each ofthe D-SCs 46a-46d
may also include an AE, GC, RAR, CS, REM, SEC, HDR,
TM and IP connected to the routing function along with the
manager. For convenience, hereinafter a prefix of “N”, “G” or
“D” may be added to the AE, GC, RAR, CS, REM, SEC,
HDR, TM, routing function and manager differentiate
N-SCs, G-SCs and D-SCs. A prefix of “x” may be added to
the AE, GC, RAR, CS, REM, SEC, HDR, TM, routing func-
tion and manager to refer to the N-SCs, G-SCs and D-SCs
collectively.

Each of the N-SCs 30a-30¢, G-SCs 56a, 565 and D-SCs
46a-46d may also include SC-t0-SC interaction capabilities
s0 as to enable device-to-device (D2D), gateway-to-gateway
(G2G) and service-to-server (S2S) direct communications.

10

15

20

25

30

35

40

45

50

55

60

65

8

Portions of some or all of the N-SCs 30a-30c, G-SCs 56a, 565
and D-SCs 46a-46d (collectively “xSCs”) may be defined in
accordance with standards directed to M2M communications
and/or operations, such as the ETSI TS 102 690, for example.

In general, an SC may define and/or implement a function
that may be utilized by various M2M applications. To facili-
tate this, the SCs 24 may expose such functionality to the
various M2M applications through a set of open interfaces.
Additionally, the SCs may use functionalities (“networks
functionalities”) of the access/core and/or transport networks
20, 22. The SCs may, however, hide network specificities
from the various M2M applications, and instead, may handle
network management for such applications via the SCs. The
SCs may be M2M specific. Alternatively, the SCs may be
generic, e.g., providing support for M2M applications and for
applications other than M2M applications. As described in
more detail below, each of the N-SCL resource structures
32a-32¢, G-SCL resource structures 58a-58¢ and/or D-SCLs
44a-44d may include one or more resources and/or attributes
that may arranged in a hierarchy based on architectures of one
or more of the xSCs.

Example xREM Management Layers and Functions

FIG. 2 is a block diagram illustrating an example set of
logical management layers 200 defining a functional archi-
tecture for performing xREM. In general, the management
layers 200 may define functionality for managing communi-
cation modules, SCLs, and applications. The management
layers 200 may also differentiate management functional-
ities, define corresponding management objects and resource
structures, and identify management functionalities at xREM
for an M2M device (“DREM”), an M2M gateway
(“GREM”), and a M2M area network (“NREM?”), respec-
tively. Differentiation of the management functionalities of
the management layers 200 may be based on the type of M2M
remote entity. The management layers 200 may include, for
example, separate layers that define functionality for manag-
ing (1) M2M application(s), (ii) an M2M SC(s); (iii) M2M
area network(s) and an M2M gateway(s); and (iv) M2M
device(s). Each of the management layers 200 may include
functionality for performing configuration management 210,
fault management 212, performance management 214, etc. of
the M2M remote entity residing at such management layer. In
one embodiment, the management layers 200 may include an
application-management layer 202, a service management
layer 204, a network management layer 206 and a device
management layer 208. The management layers 200 may
include other layers, as well.

Example M2M Application Management Layer

The M2M application management layer 202 may handle
managing M2M applications, including defining manage-
ment functionalities, defining management objects and
resource structures, and identifying management functional-
ities at xREM associated with managing M2M applications.
The M2M application management layer 202 may handle
lifecycle management of the M2M device applications in
M2M devices and/or M2M gateways (collectively “D/G”),
which may include any of installing, updating, deleting, acti-
vating, deactivating application software in the D/G. The
M2M application management layer 202 may also handle
configuration management of the applications in the D/G.
This may include configuring and/or provisioning initial set-
tings of and/or updates to such applications, for instance. The
M2M application management layer 202 may handle fault

US 9,426,222 B2

9

management of the applications in the D/G, including, for
example, collecting and/or retrieving fault-related informa-
tion. The M2M application management layer 202 may
handle performance management of the applications in the
D/G, including, for example, collecting and/or retrieving per-
formance-related information. The owner of the M2M appli-
cation management layer 202 may be, for example, M2M
application providers.

Example M2M Service Management Layer

The M2M service management layer 204 may handle man-
aging M2M SCs, including defining management function-
alities, defining management objects and resource structures,
and identifying management functionalities at XREM associ-
ated with managing M2M SCs. The M2M service manage-
ment layer 204 may handle software/firmware update of
SCLs in the D/G; configuration management of the SCLs in
the D/G, including configuring or provisioning initial settings
of'and/or updates to the SCLs; fault management of the SCLs
in the D/G, including, for example, collecting and retrieving
fault-related information; and performance management of
the SCLs in the D/G, which may include collecting and
retrieving performance-related information. The owner of
M2M service management layer 204 may be M2M service
providers, for example.

Example M2M Network Management Layer

The M2M network management layer 206 may handle
managing an M2M area network, including defining manage-
ment functionalities, defining management objects and
resource structures, and identifying management functional-
ities at xREM associated with managing M2M area networks.
For example, this layer may control routing management,
topology management, and network lifetime management.
Since M2M area networks are connected by a M2M GW in
many cases, the M2M GW may play a role in the network
management layer 206.

The M2M network management layer 206 may handle
configuration management of the M2M area networks,
including, for example, configuring and/or provisioning an
initial operational configuration of the M2M area networks,
which may include configuring IPv6 address prefix, working
frequency, WPAN 1D, etc. The M2M network management
layer 206 may also handle (i) updating the configuration of
the D/G, which may include updating of parameters and/or
constants in 6LoWPAN/ROLL/CoAP; (i) fault management
of'the M2M area networks, including anomaly detection (for
instance, an outdated or wrong route, a loopback route) and/
or alarm generation and/or processing; (iii) performance
management of the M2M area networks, which may include
any of duty cycle management of the (e.g., whole) M2M area
networks, Topology/route management and QoS manage-
ment. The owner of network management layer 206 may be
M2M area network providers, which can be M2M application
providers, M2M service providers, or M2M users.

Example M2M Device Management Layer

The device management layer 208 may handle managing
M2M end devices, such as D/G, including defining manage-
ment functionalities, defining management objects and
resource structures, and identifying management functional-
ities at xREM associated with the M2M end devices. The
device management layer 208 may handle management func-
tionalities for resource-constrained M2M devices, which

10

15

20

25

30

35

40

45

50

55

60

65

10

may include, for example, duty cycle management and power
management. The device management layer 208 may handle
(1) configuration management of the D/G, which may include
configuring an initial operation of the D/G and/or updating
the configuration of the D/G; (ii) fault management of the
D/G, which may include any of anomaly detection and alarm
generation and processing; (iii) performance management of
the D/G, which may include, for example, any of manage-
ment of constrained resources (sensors, actuators, power/
battery, memory, CPU, communication interfaces, etc.),
power saving management (e.g., duty cycle of the whole
node, duty cycle of transceiver(s), and sensors/actuators man-
agement (e.g., sharing among different applications). The
owner of the device management layer 208 may be M2M
application providers, M2M service providers, M2M area
network providers, or M2M users.

Referring to FIG. 3A a block diagram illustrating an
example resource structure framework 300 for provisioning a
SCL with a resource structure in accordance with a set of
management layers and functions thereof is shown. The SCL
on which such resource structure may be provisioned may be
a hosting SCL, such as any of the N-SCLs 26a-26¢, for
instance. The resource structure provisioned on the hosting
SCL may be subsequently provisioned (e.g., replicated in
whole or in part) on one or more other hosting SCLs and/or on
one or more remote SCLs, such as the G-SCLs 56a, 565
and/or D-SCLs 44a-44d, by way of synchronization among
the hosting SCL, the other hosting SCLs and/or the remote
SCLs. Alternatively, the SCL on which such resource struc-
ture may be provisioned may be a remote SCL, such as any of
the G-SCLs 56a, 565 and/or D-SCLs 44a-44d. The resource
structure provisioned on the remote SCL. may be subse-
quently provisioned (e.g., replicated in whole or in part) on
one or more other remote SCLs and/or one or more hosting
SCLs, such as the N-SCLs 26a-26¢, by way of synchroniza-
tion between the remote SCL, the other remote SCLs and/or
the hosting SCLs. Additionally and/or alternatively, the
resource structure framework 300 may be used for provision-
ing the resource structure on multiple hosting SCLs and/or
multiple remote SCL, as well.

The resource structure framework 300 may include a root
resource of the appropriate SCL (“<sclBase>"") 302, a plural-
ity of resources subordinated to the <sclBase> 302 (“sub-
resources”) and one or more attributes 304. The attributes 304
may be associated with (e.g., are common to) some or all of
the sub-resources directly subordinate from the <sclBase>
302. Alternatively, the attributes 304 may be associated with
the sub-resources directly and/or indirectly subordinate from
the <sclBase> 302. The sub-resources directly subordinate
from the <sclBase> 302 may include a SCLs (“scls”) sub-
resource 306, an applications (“applications”) sub-resource
308, a containers (“containers”) sub-resource 310, a groups
(“groups”) sub-resource 312, an access rights (“access-
Rights”) sub-resource 314, a subscriptions (“subscriptions™)
sub-resource 316, a discovery (“discovery”) sub-resource
318, an access status (“accessStatus”) sub-resource 320 and a
management objects (“mgmtObjs”) sub-resource 322.

The scls sub-resource 306 may be a collection of individual
SCL resources; each of which may represent an associated
(e.g., remote) SCL that is authorized to interact with the
hosting SCL, e.g., by way of a M2M service registration
procedure. Each SCL resource of the scls sub-resource 306
may be created responsive to successful registration of the
associated SCL with its local SCL or vice-versa. The scls
sub-resource 306 may include, maintain and/or store context
information about the respective registered SCLs. Each ofthe

US 9,426,222 B2

11

scls sub-resource 306 may include one or more sub-resources
and/or one or more attributes (not shown).

The applications sub-resource 308 may be a collection of
individual application resources; each of which may include,
maintain and/or store information about an application. Each
application resource of the applications sub-resource 308
may be created responsive to successful registration of an
associated application with a local SCL.

The containers sub-resource 310 may be a collection of
individual container resources; each of which may be generic
resource for use with exchanging information between appli-
cations and/or SCLs. Each container resource of the contain-
ers sub-resource 310 may facilitate the exchange of informa-
tion between applications and/or SCLs by using the
corresponding container as a mediator for buffering the infor-
mation.

The groups sub-resource 312 may be a collection of indi-
vidual group resources. Each group resource of the groups
sub-resource 312 may be used to define and/or access groups
of the other sub-resources, including the sub-resources
directly and/or indirectly subordinate from the <sclBase>
302.

The accessRights sub-resource 314 may be a collection of
individual access right (“accessRight”) resources; each of
which may include, maintain and/or store a representation of
permissions. Each accessRight resource of the accessRights
sub-resource 314 may be associated with one or more of the
other sub-resources that may be accessible to entities external
to the hosting SCL. The representation of permissions of each
of the accessRights 314 may include an identification of a
permission holder and an identification of rights granted to
the permission holder. The identification of rights granted to
the permission holder may be, for example, a permission flag
associated with one or more of the rights granted for the
corresponding sub-resource.

The subscriptions sub-resource 316 may be a collection of
individual subscription resources. Each subscription resource
of'the subscriptions 316 may include information for tracking
a status of a (e.g., active) subscription to its parent resource,
namely, the <sclBase> 302. Each of the subscriptions 316
may represent a request, from an issuer, for notification of
modifications on the <sclBase> 302.

The discovery sub-resource 318 may be used to allow
discovery of the sub-resources. The discovery sub-resource
318 may be used to retrieve a list of uniform resource identi-
fiers (“URIs”) of the sub-resource matching a discovery filter
criteria. The accessStatus sub-resource 320 may be a collec-
tion of individual access status resources.

The mgmtObjs sub-resource 322 may be a collection of
individual management object (“mgmtObj”) resources. Each
mgmtObj resource of the mgmtObjs 322 may include, main-
tain and/or store management information and/or parameters
for carrying out REM. The mgmtObjs sub-resource 322 may
include an application management objects sub-resource
(“appMgmtObjects”) sub-resource 324, an SCL. management
objects sub-resource (“sclMgmtObjects”) sub-resource 326,
a network management objects sub-resource (“nwkMgmtO-
bjects”) sub-resource 328, a device management objects sub-
resource (“devMgmtObjects™) sub-resource 330, an OMA-
DM management objects sub-resource
(“omaMgmtObjects”) sub-resource 332 and a BBF-TR069
management objects sub-resource (“bbfMgmtObjects”) sub-
resource 334. The mgmtObjs sub-resource 322 may include
other and/or different mgmtObj resources, as well.

The appMgmtObjects sub-resource 324 may be a collec-
tion of individual application management object (“appMg-
mtObject”) resources. Each appMgmtObject resource may

10

15

20

25

30

35

40

45

50

55

60

65

12

include information and/or parameters for carrying out REM
in accordance with an application management layer and
functions thereof, such as the application management layer
202 (FIG. 2). Each appMgmtObject resource may be dis-
posed subordinate to the appMgmtObjects sub-resource 324
as a <mgmtObject> instance 324-1.

The scIMgmtObjects sub-resource 326 may be a collection
of individual SCL. management object (“sclMgmtObject”)
resources. Each sclMgmtObject resource may include infor-
mation and/or parameters for carrying out REM in accor-
dance with a service management layer and functions thereof,
such as the service management layer 204 (FIG. 2). Each
sclMgmtObject resource may be disposed subordinate to the
sclMgmtObjects sub-resource 326 as a <mgmtObject>
instance 326-1.

The nwkMgmtObjects sub-resource 328 may be a collec-
tion of individual network management object (“nwkMgm-
tObject”) resources. Each nwkMgmtObject resource may
include information and/or parameters for carrying out REM
in accordance with a network management layer and func-
tions thereof, such as the network management layer 206
(FIG. 2). Each nwkMgmtObject-resource may be disposed
subordinate to the nwkMgmtObjects sub-resource 328 as a
<mgmtObject> instance 328-1.

The devMgmtObjects sub-resource 330 may be a collec-
tion of individual device management object (“devMgmtO-
bject”) resources. Each devMgmtObject resource may
include information and/or parameters for carrying out REM
in accordance with a device management layer and functions
thereof, such as the device management layer 208 (FIG. 2).
Each devMgmtObject resource may be disposed subordinate
to the devMgmtObjects sub-resource 330 as a <mgmtObject>
instance 330-1.

The omaMgmtObjects 332 may be a collection of indi-
vidual OMA-DM management object (“omaMgmtObject”)
resources. Each omaMgmtObject resource may include
information and/or parameters for carrying out REM in
accordance with OMA-DM and/or OMA-DM compatible
management functions. Each omaMgmtObject resource may
be disposed subordinate to the omaMgmtObjects sub-re-
source 332 as a <mgmtObject> instance 332-1.

The bbfMgmtObjects sub-resource 334 may be a collec-
tion of an individual BBF-TR069 management object
(“bbfMgmtObject”) resources. FEach bbfMgmtObject
resource may include information and/or parameters for car-
rying out REM in accordance with BBF-TR069 and/or BBF-
TR069 compatible management functions, such as, for
example, BBF-TR069 Remote Procedure Call (RPC) meth-
ods. Each bbfMgmtObject resource may be disposed subor-
dinate to the bbfMgmtObjects sub-resource 334 as a <mgm-
tObject> instance 334-1.

Although, the mgmtObjs sub-resource 322 as shown in
FIG. 3 A exist only in <sclBase-of-Server>/scls/<scl>/mgm-
tObjs, other (e.g., multiple) mgmtObjs sub-resources may be
placed in various further subordinated branches/locations of
the <sclBase> 302. This way, such other mgmtObjs sub-
resources may explicitly correspond to specific management
functions (such as to applications or SCLs).

FIG. 3B is a block diagram illustrating an example
resource structure framework 340 for provisioning a SCL
with a resource structure in accordance with a set of manage-
ment layers and functions thereof. The SCL on which such
resource structure may be provisioned may be a local SCL,
such as any of the G-SCLs 564, 565 and/or D-SCLs 44a-444,
for instance. The resource structure provisioned on the local
SCL may be subsequently provisioned (e.g., replicated in
whole or in part) on one or more other hosting SCLs and/or on

US 9,426,222 B2

13

one or more remote SCLs, such as the N-SCLs 26a-26¢, by
way of synchronization among the local SCL and/or the host-
ing SCLs. Alternatively, the SCL. on which such resource
structure may be provisioned may be a hosting SCL, such as
any of the N-SCLs 26a-26¢. The resource structure provi-
sioned on the hosting SCL, may be subsequently provisioned
(e.g., replicated in whole or in part) on one or more other
remote SCLs, such as the G-SCLs 56a, 565 and/or D-SCLs
44a-44d, by way of synchronization between the hosting SCL.
and the remote SCLs. Additionally and/or alternatively, the
resource structure framework 340 may be used for provision-
ing the resource structure on multiple local SCLs and/or
multiple hosting SCLs, as well.

The resource structure framework 340 may include a <scl-
Base> 342, a plurality of sub-resources to the <sclBase> 342,
one or more attributes 344 associated with some or all of the
sub-resources directly subordinate from the <sclBase> 342,
and attributes 350 and 360 associated with the sub-resources
indirectly subordinate from the <sclBase> 342.

The sub-resources directly subordinate from the <scl-
Base> 342 are similar to sub-resources directly subordinate
from the <sclBase> 302 of FIG. 3A, except as follows. The
sub-resources directly subordinate from the <sclBase> 342
may include an applications sub-resource 346 and an mgm-
tObjs sub-resource 348.

The mgmtObjs sub-resource 348 (at <sclBase>/mgmtO-
bjs) may be a collection of individual management object
(“mgmtObj”) resources. The mgmtObjs sub-resource 348
may include, maintain and/or store management information
and/or parameters for carrying out REM in accordance with
any of (i) a service management layer and functions thereof;
(i) a network management layer and functions thereof, (ii) a
device management layer and functions thereof, (iv) OMA-
DM and/or OMA-DM compatible management functions,
and (v) BBF-TR069 and/or BBF-TR069 compatible manage-
ment functions. The mgmtObjs sub-resource 348 may, for
example, include the sclMgmtObjects sub-resource 326, the
nwkMgmtObjects sub-resource 328, the devMgmtObjects
sub-resource 330, the omaMgmtObjects sub-resource 332
and the bbfMgmtObjects sub-resource 334. The mgmtObjs
sub-resource 348 may include other and/or different mgm-
tObj resources, as well.

The applications sub-resource 346 may include a collec-
tion of individual application (“<application>") resources
352, an accessStatus sub-resource 354, a subscriptions sub-
resource 356, a mgmtObjs sub-resource 358 and the attributes
350 associated with the sub-resources of the applications
sub-resource 346. The mgmtObjs sub-resource 358 (at <scl-
Base>/applications/mgmtObjs) may include a collection of
sub-resources for performing REM of all applications regis-
tered under the <sclBase> 342 as a whole.

Each of the individual application resources 352 may
include a containers sub-resource 362, a groups sub-resource
364, an accessRights sub-resource 366, an accessStatus sub-
resource 368, a subscriptions sub-resource 370, a mgmtObjs
sub-resource 372 and the attributes 360 associated with the
sub-resources of the corresponding individual application
resources 352. The mgmtObjs sub-resource 372 (at <scl-
Base>/applications/<application>mgmtObjs) may include a
collection of sub-resources for performing REM of a specific
<application> associated with a corresponding <application>
sub-resource 352.

FIG. 3C is a block diagram illustrating an example
resource structure framework 376 for provisioning a SCL
with a resource structure in accordance with a set of manage-
ment layers and functions thereof. The SCL on which such
resource structure may be provisioned may be a hosting SCL,,

25

40

45

55

14

such as any of the N-SCLs 26a-26¢, for instance. The
resource structure provisioned on the hosting SCL. may be
subsequently provisioned (e.g., replicated in whole or in part)
on one or more other hosting SCLs and/or on one or more
remote SCLs, such as the G-SCLs 56a, 565 and/or D-SCLs
44a-44d, by way of synchronization among the hosting SCL,
the other hosting SCLs and/or the remote SCLs. Alterna-
tively, the SCL on which such resource structure may be
provisioned may be a remote SCL, such as any of the G-SCLs
56a, 565 and/or D-SCLs 44a-44d. The resource structure
provisioned on the remote SCL. may be subsequently provi-
sioned (e.g., replicated in whole or in part) on one or more
other remote SCLs and/or one or more hosting SCLs, such as
the N-SCLs 26a-26c¢, by way of synchronization between the
remote SCL, the other remote SCLs and/or the hosting SCLs.
Additionally and/or alternatively, the resource structure
framework 340 may be used for provisioning the resource
structure on multiple hosting SCLs and/or multiple remote
SCL, as well.

The resource structure framework 376 may include a <scl-
Base> 378, a plurality of sub-resources to the <sclBase> 378,
one or more attributes associated with some or all of the
sub-resources directly and/or indirectly subordinate from the
<sclBase> 378. The sub-resources directly subordinate from
the <sclBase> 378 are similar to sub-resources directly sub-
ordinate from the <sclBase> 302 of FIG. 3A, except that no
mgmtObjs sub-resource is directly subordinate from the <scl-
Base> 378. Instead, the resource structure framework 376
includes multiple mgmtObjs sub-resources at may be placed
in various further subordinated branches/locations of the
<sclBase>378. For example, the <sclBase> 378 may include
amgmtObjs sub-resource 380 (at <sclBase> scls/mgmtObjs).
The mgmtObjs sub-resource 380 may include a collection of
sub-resources for carrying out REM of all SCLs registered to
the M2M server as a whole. These sub-resources may include
information and/or parameters for carrying out REM of all
SCLs registered to the M2M server as a whole in accordance
with a service management layer and functions thereof, such
as the service management layer 204 (FIG. 2).

The <sclBase> 378 may also include a mgmtObjs sub-
resource 382 (at <sclBase>/scls/<scl>/mgmtObjs). This
mgmtObjs sub-resource 382 may include a collection of sub-
resources for carrying out REM of service capabilities and
other management functions (network management layer and
device management layer) of <scl> registered to the M2M
Server. In one embodiment, the sub-resources may include
information and/or parameters for carrying out REM of the
service capabilities and other management functions of <scl>
registered to the M2M server in accordance with (i) a network
management layer and functions thereof, such as, the network
management layer 206 (FIG. 2); and (ii) and a device man-
agement layer, such as the device management layer 208
(FIG. 2).

The <sclBase> 378 may also include a mgmtObjs sub-
resource 384 (at <sclBase>/scls/<scl>/applications//mgmtO-
bjs). The mgmtObjs sub-resource 384 may include a collec-
tion of sub-resources for performing REM of all applications
announced to the Server as a whole. The <sclBase> 378 may
further include a mgmtObjs sub-resource 386 (at <sclBase>/
scls/<scl>/applications/<applicationAnnc>/mgmtObjs).
This mgmtObjs sub-resource 386 may include a collection of
sub-resources for performing REM of the specific <applica-
tionAnnc> announced to the M2M server.

In an embodiment, the mgmtObjs sub-resource 382 (at
<sclBase>/scls/<scl>/mgmtObjs) may be used by DAs and/
or GA to manage another D/G that registers with an M2M
server. The M2M Server (i.e., <scl>) may announce its

US 9,426,222 B2

15
<mgmtObj> to the D/G. Then DA/GA can access such
announced <mgmtObj> in the D/G, and in turn, be able to
manage the other D/G via messaging relaying at the M2M
server.

FIG. 4A is a block diagram illustrating an example
resource structure framework 400 for provisioning an SCL
with mgmtObjs. The resource structure framework (“mgm-
tObjs structure framework™) 400 may include, as a root, a
mgmtObjs 402, a plurality of sub-resources to the mgmtObjs
402, one or more attributes 404 associated with some or all of
the sub-resources directly subordinate from the mgmtObjs
402, and attributes 416, 418, 430, and 442 associated with the
sub-resources indirectly subordinate from the mgmtObjs
402. The attributes 404 may include an accessRightID; a
creationTime; a lastModifiedTime; a description, such as a
text-format description of mgmtObjs 402; and allowed-
Method. The allowedMethod may specify allowed RESTful
method(s) for processing the mgmtObjs sub-resource 402.

The plurality of sub-resources to the mgmtObjs 402 may
include an mgmtObj (“<mgmtObj>") sub-resource 406, a
management object announce (“<mgmtObjAnnc>"") sub-re-
source 408, an accessRights sub-resource 410, an accessSta-
tus sub-resource 412 and a subscriptions sub-resource 414.

The <mgmtObj> sub-resource 406 may be a specific man-
agement object and a placeholder for storing related manage-
ment data/parameters for this <mgmtObj> sub-resource 406.
The <mgmtObjAnnc> sub-resource 408 may be a place-
holder for an announced management object. The <mgmtO-
bjAnnc> sub-resource 408 may include the following
attributes (i) link, (ii) accessRightID, and (iii) searchStrings.

The <accessRights> sub-resource 410 may include, main-
tain and/or store a representation of permissions for the sub-
resource used for performing REM. The <accessRights> sub-
resource 408 may be inherited from its parent, if any.

The accessStatus sub-resource 414 may be a collection of
individual access status resources. The subscriptions sub-
resource 414 may be a collection of subscription resources;
each of which may include information for tracking a status of
a (e.g., active) subscription to its parent resource. Each of the
subscriptions 414 may represent a request, from an issuer, for
notification of modifications on the parent resource.

The <mgmtObj> sub-resource 406 may include (i) a
<parameters> sub-resource 420, which may be a placeholder
for a collections of multiple parameters for management pur-
poses; (i) a <parameter> sub-resource 422, which may be a
single management parameter; (iii) an <accessRights> sub-
resource 424 for xREM purposes; (iv) an <accessStatus>
sub-resource 426; and (v) a <subscriptions> sub-resource
428. The <accessRights> sub-resource 424 may include,
maintain and/or store a representation of permissions for the
sub-resource used for performing REM. The <accessRights>
sub-resource 424 may be inherited from its parent, if any.

The <mgmtObj> sub-resource 406 may include the follow-
ing attributes (i) an accessRightID, a creationTime, a last-
ModifiedTime, a description (e.g., a text-format description
of the <mgmtObj> sub-resource 406), an allowedMethod,
and a contentType. The allowedMethod may specify allowed
REST({ul method(s) for processing the <mgmtObj> sub-re-
source 406. The contentType may specify the type of the
<mgmtObj> sub-resource 406. The contentType attribute
may be referred to as dataType attribute, as well

The <parameters> sub-resource 420 may include a
<parameters> sub-resource 432. This <parameters> sub-re-
source 432 may be a placeholder for collections of multiple
parameters for management purposes. By making the
<parameters> sub-resource 432 subordinate to the <param-
eters> sub-resource 432, a hierarchical tree structure can be

10

15

20

25

30

35

40

45

50

55

60

65

16

supported, and import of existing management objects may
be simpler than a flat structure.

The <parameters> sub-resource 420 may also include (i) a
<parameter> sub-resource 434 for maintaining and/or storing
a single management parameter; (ii) an <accessRights> sub-
resource 436 for xREM purpose; (iii) an <accessStatus> sub-
resource 438; and a <subscriptions> sub-resource 440. The
<accessRights> sub-resource 436 may include, maintain and/
or store a representation of permissions for the sub-resource
used for performing REM. The <accessRights> sub-resource
436 may be inherited from its parent, if any.

The <parameters> sub-resource 420 may include the fol-
lowing attributes (i) accessRightID, (ii) creationTime, (iii)
lastModifiedTime, (iv) description (e.g., a text-format
description of the <parameters> sub-resource 420), (v) an
allowedMethod, and (vi) a contentlype/datalype. The
allowedMethod may specity allowed RESTful method(s) for
processing the <mgmtObj> sub-resource 436. The content-
Type/dataType may specify the type of the <mgmtObj> sub-
resource 436.

Further, as shown in the example of FIG. 4A, the mgmtO-
bjs 402 has an additional hierarchical structure by subordi-
nating another <parameters> sub-resource 432 to the
<parameters> sub-resource 420. In this substructure, the
<parameters> sub-resource 420 may include both a number
of the <parameters> sub-resources 432 and an individual
<parameter> resource 434. Such hierarchical structure sim-
plify importing other management trees into the mgmtObjs
402 and/or simplify performing tree structure mapping. Note
that such hierarchical structure might not be realized without
the <mgmtObj>sub-resource 406 and its children (e.g., using
existing containers or groups resources) unless one container
(or group) resource is adapted to allow creation and use of a
contentInstance (or member) with another container (or
group) as its sub-resource.

The <parameter> resource 434 may include (i) a <default-
Value> sub-resource 444 that may include, maintain and/or
store a default value of the <parameter> sub-resource 434; (ii)
a <currentValue> sub-resource 446 that may include, main-
tain and/or store a current value of the <parameter> sub-
resource 434; (iii) an <accessRights> sub-resource 448 for
xXxREM purposes; (iv) an <accessStatus> sub-resource 450;
and (v) a <subscriptions> sub-resource 444. The <access-
Rights> sub-resource 448 may include, maintain and/or store
a representation of permissions for the sub-resource used for
performing REM. The <accessRights> sub-resource 448 may
be inherited from its parent, if any.

The <parameter> resource 434 may include the following
attributes (i) accessRightID, (ii) creationTime, (iii) lastModi-
fiedTime, (iv) a description (e.g., a text-format description of
the <parameter> resource 434, and (v) an allowedMethod.
The allowedMethod may specify allowed RESTful method
(s) for processing the <parameter> resource 434.

In an alternative embodiment, a two-level resource struc-
ture framework 458 for provisioning an SCL with mgmtObjs
is shown in FIG. 4B. The resource structure framework 458
may include mgmtObjs 460. The mgmtObjs 460 is similar to
the mgmtObjs 402 of FIG. 4A, except that mgmtObjs 460
does not include the <parameters> sub-resource 420.

Example M2M xREM Management Model

In an embodiment, xREM may be implemented under a
client/server (C/S) model. Additionally and/or alternatively,
the xREM may use a proxy function to manage M2M Devices
behind a M2M GW, such as the D 34d and D's 34e-34g (FIG.
1).

US 9,426,222 B2

17

In an embodiment, an xREM server may be a management
controller. The xREM server may operate as, for example, or
with functionality similar to any of a SNMP manager, a DM
server in accordance with OMA DM, and an ACS in accor-
dance with the BBF-TR069. The xXREM Server may control
and manage interactions with xXREM client and xREM proxy.

In an embodiment, an XREM client may be a software
entity controlled by xREM server. The xREM client may as,
for example, or with functionality similar to any of a SNMP
agent, a DM Client in accordance with OMA DM, and a CPE
in accordance with BBF TR-069. xREM Server and xREM
Client may work together to establish management session
and perform management functionalities.

In an embodiment, an XREM proxy may play roles of both
an XREM client and an XREM server. The xREM proxy may
have non-xREM management server function for managing
D'-type devices, such as M2M Devices operating in accor-
dance with OMA DM, and/or BBF TR-069, and/or M2M
Devices without SCLs. The xXREM proxy may include trans-
lation and/or adaptation functions between the xREM Client
and the xXREM Server (or non-xREM management server).
Example functions may include translation between xREM
client and XREM server, and translation between xREM cli-
ent and non-xREM management server.

In an embodiment, an XREM can be an xREM server (a
manager), an XREM client (a managed entity), or an XREM
proxy (acting as both a manager and a managed entity)
depending on where it locates.

FIG. 5 is a block diagram illustrating a diagram of a client-
server model 500 for performing xREM. The xREM may be
performed in accordance with ETSI TS 102 960. Referring to
FIG. 5, a NREM 502 may include an xXREM server 502-1,
which performs communication interactions with one or
more XREM clients, such as any of xXREM clients 504-1 and
506-1 of DREM 504 and GREM 506, respectively, or an
XREM proxy 510-1 of GREM 510. The NREM 502 may have
separate interfaces to third-party management authorities 512
and other NREM, such as NREM 508. The GREM 510 may
operate as an XREM Client 510-2 or an XREM Proxy 510-1.
When the M2M gateway operates as an end device to be
managed by the M2M server, the GREM 510 may operate as
an XxREM client. When the M2M gateway operates as a proxy
for the M2M server to manage M2M devices (either ETSI-
compliant or non-ETSI) behind the M2M gateway, the
GREM 510 operates as an XREM proxy. As the xREM proxy
510-1, the GREM 510 may include the xREM client 510-2, an
XREM server 510-3, a non-xREM management server 510-4,
and protocol translation unit 510-5. A DREM 512 may
include the xREM client 512-1. The xXREM client 512-1 may
interact with the xXREM server 502-1 in the NREM 502 or,
alternatively, to the xREM server 510-3 in the XREM proxy
510-1.

Ifan OMA DM is used to implement the xXREM, the xREM
server 502-1 may be a DM server, and the xREM client 512-1
may be a DM client. The xREM proxy 510-1 may be a OMA
GwMO. If BBF TR-069 is used to implement the xREM, the
xXREM server 502-1 may be an ACS, and the xREM client
512-1 may be a CPE. If SNMP is used for implementing the
xREM, the xREM Server 502-1 may be a SNMP manager,
and the xREM client 512-1 may be an SNMP agent. The
XREM proxy 510-1 may be an SNMP proxy.

Support Multiple Management Protocols

In accordance with an embodiment, an integrated M2M
system, such as the system 10, may include multiple vertical
M2M applications, where different management protocols
may be deployed. For example, an M2M device supporting
DM client as its xREM client may move and connect to a

10

15

20

25

30

35

40

45

50

55

60

65

18
M2M GW supporting BBF TR-069 only, or to a M2M server,
which has managed only a BBF TR-069 device. In the alter-
native, other suitable OMA DM devices and BBF TR-069
devices may be managed in an integrated M2M system
according to embodiments herein.

FIG. 6 is a block diagram illustrating a tunnel-based
approach to support xREM using multiple different manage-
ment protocols. The NREM 602 and/or GREM 604 may use
different management protocols for management interactions
with different M2M GWs and devices. A tunnel module may
perform the following. The tunnel module may perform nego-
tiation to negotiate between the D/GREM and NREM and/or
between the GREM and DREM to determine which manage-
ment protocol to use. The tunnel module may also conduct an
XREM software update in accordance with the determination.

The tunnel module may perform a data model translation to
translate between xREM data model and OMA DM mgmt
objects, BBF TR-069 management parameters, and/or SNMP
MIB. The tunnel module may also perform management
command conversion and/or mapping between the OMA DM
commands or BBF TR-069 commands and the xXREM REST-
ful methods. The tunnel module may also perform protocol
adaptation to adapt the OMA DM, BBF TR-069 or SNMP
protocols to be able to use the RESTful methods over the mid
reference points.

Approaches for Negotiating or Indicating Management
Protocols

A parameter, referred to as, for example, mgmtProtocol-
Type, may be used to represent the type of management
protocol. The mgmtProtocolType may be an attribute (or
sub-resource) of the resource <scl>, which may be the SCL of
an M2M Device, an M2M Gateway, or an M2M Server. In
addition, mgmtProtocolType may be included into M2M
SCL management object (referred to as “SCLMO™) as a
configuration parameter. In one embodiment, the M2M
Device may use “mgmtProtocolType” to indicate the man-
agement protocol type to use between the M2M Device and
the M2M Server, or between the M2M Device and an M2M
Gateway. In an embodiment, the M2M Gateway may use
“mgmtProtocolType” to represent the management protocol
type used between the M2M Gateway and the M2M Server.
To facilitate this, the <scl> of the M2M Gateway may include
an attribute (or sub-resource) “mgmtProtocolType” and the
SCLMO of the M2M Gateway may include a parameter
“mgmtProtocolType”. If M2M Devices exist behind the
M2M Gateway, a second attribute or (sub-resource) “mgmt-
Protocol TypeExt” may used to represent the management
protocol type between the M2M Devices behind the M2M
Gateway and the M2M Gateway.

In an embodiment, the M2M Server may use “mgmtPro-
tocol Type” to represent the management protocol type it sup-
ports for managing M2M Devices and/or M2M Gateways. To
facilitate this, the <scl> of the M2M Server may include an
attribute (or sub-resource) “mgmtProtocolType”.

In an embodiment, the N-SCL (and/or G-SCL) may
include a attribute (or sub-resource) mgmtProtocolType that
represents a list of multiple management protocols the corre-
sponding NREM and/or GREM) supports

As an alternative, mgmtProtocolType can be added to as an
attribute of an mgmtObjs resource and/or an attribute of each
<mgmtObj> instance. The following approaches may be
applied for negotiating or indicating management protocols
between DREM and/or GREM (“D/GREM”) and NREM
and/or between DREM and GREM using mgmtProtocol Type
as an attribute of <scl>, an attribute of mgmtObjs resource or
an attribute of a <mgmtObj>.resource.

US 9,426,222 B2

19

FIGS. 7A-7C are flow diagram illustrating example flows
700, 730 and 760, respectively, for determining a type of
management protocol to use for REM. Each of the flows 700,
730 and 760 is described with reference to system 10 of FIGS.
1A-1C for convenience. The flows 700, 730 and 760 may be
carried out using other architectures, as well.

Between D/GREM and NREM

Approach 1—Piggyback mgmtProtocolType in “SCL
Registration” and/or “Update SCL Registration”

Referring now to the flow 700 of FIG. 7A, the D/GREM
may initiate a SCL registration process (702), during which
the D/GREM may send one or more request (“SCL REGIS-
TRATION REQUEST”) messages to the M2M Server
(NREM). As part of, prior to and/or after the initiation of the
SCL registration process (702), the D/GREM may obtain
from the “mgmtProtocol Type” attribute/sub-resource of the
D/G-SCL a value (“mgmtProtocolType (value)”) indicative
of the type of management protocol the D/GREM supports.

The M2M Device/Gateway (D/GREM) may then select
and populate one or more of the SCL. REGISTRATION
REQUEST messages with the mgmtProtocol Type (value) as
a parameter thereof, and then send such SCL. REGISTRA-
TION REQUEST [mgmtProtocolType (value)] messages to
the M2M Server (NREM) (704). Responsive to SCL, REG-
ISTRATION REQUEST [mgmtProtocolType (value)] mes-
sage(s), the M2M Server (NREM) may select and populate
one or more response (“SCL. REGISTRATION
RESPONSE”) messages with the received mgmtProtocol-
Type (value) as a parameter thereof. Thereafter, the M2M
Server (NREM) may send such SCLL REGISTRATION
RESPONSE [mgmtProtocolType (value)] message(s) to the
M2M Device/Gateway (D/GREM) to acknowledge receipt of
the mgmtProtocolType (value) and/or acceptance of the type
of'the management protocol indicated by the received mgmt-
ProtocolType (706). After receipt of the SCL. REGISTRA-
TION RESPONSE [mgmtProtocolType (value)] message(s)
and other messages for completing the SCL registration pro-
cess, if any, the D/GREM may terminate the SCL registration
process (708). By carrying out the flow 700, the D/GREM
may piggyback the mgmtProtocolType attribute/sub-re-
source on the SCL registration process to facilitate notifica-
tion and/or acceptance of the type of management protocol
the M2M Server (NREM) and the M2M Device/Gateway
(D/GREM) may use when performing REM.

Although not shown, the M2M Server (NREM) may, with-
out being requested, piggyback the mgmtProtocolType
attribute/sub-resource on the SCL registration process to
instruct the M2M Device/Gateway (D/GREM) to use the type
of management protocol specified or otherwise indicated by a
mgmtProtocol Type attribute/sub-resource of the N-SCL. The
M2M Server (NREM) may, for example, retrieve the mgmt-
Protocol Type (value) from the mgmtProtocol Type attribute/
sub-resource of the N-SCL, populate one or more SCL. REG-
ISTRATION RESPONSE message(s) with the
mgmtProtocolType (value) as a parameter thereof, and send
the populated SCL. REGISTRATION RESPONSE [mgmt-
Protocol Type (value)] message(s) to the M2M Device/Gate-
way (D/GREM).

As an alternative, the M2M Server (NREM) and the M2M
Device/Gateway (D/GREM) may negotiate the type of man-
agement protocol to use by exchanging SCL. REGISTRA-
TION REQUEST messages and SCL. REGISTRATION
RESPONSE messages populated with respective mgmtPro-
tocolType (values) until either the M2M Server (NREM) or
the M2M Device/Gateway (D/GREM) sends to the other the
mgmtProtocolType (value) it received.

10

15

20

25

30

35

40

45

50

55

60

65

20

FIGS. 7B-7C, the process for piggybacking mgmtProto-
colType in the Update SCL Registration is as follows:

During the Update SCL Registration process, the M2M
Server (NREM) can specify “mgmtProtocol Type” to be used
by the M2M Device/Gateway (D/GREM) by piggybacking it
in the message sent to the M2M Device/Gateway (D/GREM).

Alternatively, during the process of “Update SCL Regis-
tration”, the M2M Device/Gateway (D/GREM) can report
their “mgmtProtocolType” to the M2M Server (NREM) by
piggybacking “mgmtProtocolType” in the message sent to
the M2M Server (NREM).

Approach 2—Piggyback mgmtProtocolType in “Create a
mgmtObj Resource”

ETSI M2M Functional Architecture defines the following
procedure for creating management object resource. As a
result, mgmtProtocolType can be embedded in those proce-
dures so that the M2M Device/Gateway (D/GREM) can
inform its mgmtProtocolType to the M2M Server (NREM)

As shown in FIG. 8, the process for piggybacking mgmt-
Protocol Type in Create a mgmtObj resource is as follows:

If this process is initiated by the M2M Device/Gateway
(D/GREM), the M2M Device/Gateway (D/GREM) will send
a request message to the M2M Server (NREM) during this
process. The M2M Device/Gateway (D/GREM) can piggy-
back “mgmtProtocolType” as a parameter in this request
message.

Approach 3—Create New Procedure for sending “mgmt-
Protocol Type”

Instead of piggybacking “mgmtProtocolType” in existing
M2M procedures as described in Approach 2 and Approach 3,
the following procedures define a process for sending “mgmt-
ProtocolType” between the M2M Server (NREM) and the
M2M Device/Gateway (D/GREM). As shown in FIG. 9, this
process is as follows:

Update “mgmtProtocolType”

The M2M Device/Gateway (D/GREM) sends an Update
message addressing to <scl-of-server>/scls/<scl-dg>/mgmt-
Protocol Type to update “mgmtProtocolType”.

The <scl-of-server> represents the M2M Server. The <scl-
dg> represents the M2M Device/Gateway (D/GREM) for
updating the M2M Server of its mgmtProtocolType. The
“mgmtProtocolType” may be a new attribute of <scl-dg>. As
a result, the M2M Server (NREM) knows the “mgmtProto-
colType” of the M2M Device/Gateway (D/GREM), which
registers with the M2M Server.

The NREM may also actively send an Update message
addressing to <scl-dg>/'mgmtProtocolType to change the
“mgmtProtocol Type” of an M2M Device/Gateway, as shown
in FIG. 10.

As an alternate, the NREM may send a Retrieve message
addressing to <scl-dg>/mgmtProtocolType to retrieve the
current management protocol used in the M2M Device/Gate-
way.

Approach 4—Piggyback mgmtProtocolType in SCL Dis-
covery

The mgmtProtocolType can also be piggybacked in mes-
sages for SCL Discovery using the following approaches. As
shown in FIG. 11, when the M2M Device/Gateway
(D/GREM) issues a request message to discover an M2M
Server (N-SCL), the M2M Device/Gateway will include its
mgmtProtocol Type in the request message. The piggybacked
mgmtProtocolType information can help to filter out the
M2M Server that does not support the management protocol
as denoted by the mgmtProtocolType.

The mgmtProtocolType of the M2M Server may be piggy-
backed in the SCL Discovery response message to the M2M
Device/Gateway. The piggybacked mgmtProtocolType can

US 9,426,222 B2

21

help the M2M Device/Gateway to choose an appropriate
M2M Server. The M2M Device/Gateway can also change to
use the management protocol as denoted by the piggybacked
mgmtProtocol Type.

Between DREM and GREM

In this case, the M2M Devices are behind an M2M Gate-
way as a proxy. As a result, the M2M Devices need to indicate
their mgmtProtocol Type to the M2M Gateway or the M2M
Gateway can actively retrieve mgmtProtocolType of the
M2M Devices. The similar approaches for the Case 1 above
can be utilized.

Approach 1—Piggyback mgmtProtocolType in “SCL
Registration” and “Update SCL Registration”

ETSI M2M Functional Architecture defines the following
procedures for SCL. management and as a result, mgmtPro-
tocolType can be embedded in those procedures so that
DREM can inform its mgmtProtocol Type to GREM

SCL Registration:

During this process, D-SCL will send multiple request
messages to N-SCL. DREM can piggyback “mgmtProtocol-
Type” as a parameter in anyone of those request messages. In
addition, GREM can piggyback “mgmtProtocol Type” in the
response message to DREM to instruct DREM to use the
management protocol as specified by “mgmtProtocolType”.

Update SCL Registration

During the process of “Update SCL Registration”, GREM
can specify “mgmtProtocolType” to be used by DREM by
piggybacking it in the message sent to DREM. During the
process of “Update SCL Registration”, DREM can report
their “mgmtProtocolType” to GREM by piggybacking
“mgmtProtocolType” in the message sent to GREM.

Approach 2—Piggyback mgmtProtocolType in “Create a
mgmtObj Resource”

ETSI M2M Functional Architecture defines the following
procedure for creating management object resource. As a
result, mgmtProtocolType can be embedded in those proce-
dures so that DREM can inform its mgmtProtocolType to
GREM.

Create a mgmtObj Resource:

If this process is initiated by DSCL (DREM), DSCL will
send a request message to N/G-SCL. During this process, the
DREM can piggyback “mgmtProtocolType” as a parameter
in this request message.

Approach 3—Create New Procedure for Sending “mgmt-
Protocol Type”

Instead of piggybacking “mgmtProtocolType” in existing
M2M procedures as described in Approach 2 and Approach 3,
the following procedures can also be utilized for sending
“mgmtProtocolType” between GREM and DREM.

Update “mgmtProtocol Type”

The M2M Device (DREM) sends an Update message
addressing to <scl-of-gw>/scls/<scl-d>/mgmtProtocol Type
to update “mgmtProtocolType”. The <scl-of-gw> represents
the M2M Gateway. The <scl-d> represents the M2M Device
which registers with the M2M Gateway and is updating the
M2M Gateway of its mgmtProtocolType. The “mgmtProto-
colType” is the attribute of <scl-d>. As a result, the M2M
Gateway (GREM) knows the “mgmtProtocolType” of the
M2M Device (DREM) which registers with the M2M Gate-
way

The M2M Gateway (GREM) can also actively send an
Update message addressing to <scl-d>/mgmtProtocolType to
change the “mgmtProtocolType” of the M2M Device.

Retrieve “mgmtProtocol Type”

The M2M Gateway (GREM) sends a Retrieve message
addressing to <scl-d>/mgmtProtocolType to retrieve the cur-
rent management protocol used in the M2M Device.

10

15

20

25

30

35

40

45

50

55

60

65

22

Approach 4—Piggyback mgmtProtocolType in SCL Dis-
covery

The mgmtProtocol Type may also be piggybacked in mes-
sages for SCL Discovery using the following approaches.

When the M2M Device (DREM) issues a request message
to discover an M2M Gateway (G-SCL), the M2M Device will
include its mgmtProtocolType in the request message. The
piggybacked mgmtProtocol Type information can help to fil-
ter out the M2M Gateway(s) that do (does) not support the
management protocol as denoted by the mgmtProtocol Type.

The mgmtProtocol Type of the M2M Gateway can be pig-
gybacked in the SCL Discovery response message to the
M2M Device. The piggybacked mgmtProtocolType can help
the M2M Device to choose an appropriate M2M Gateway.
The M2M Device can also change to use the management
protocol as denoted by the piggybacked mgmtProtocol Type.

Example Resource Definition for All Access
Histories

For the purpose of remote entity management, it may be
important for a receiver-SCL to log all access history which a
requester/issuer-SCL has had on every local resource of the
receiver-SCL. Although the current ETSI M2M functional
architecture defines resource accessStatus, it only records the
last access (retrieve/update/subscribe)—not all operations on
aresource in the past. To facilitate storing all access history, a
new resource, referred to as accessHistories, is defined in this
disclosure. Related operations on accessHistories are also
defined.

Resource accessHistories

Based on accessStatus, accessHistory may be defined and
illustrated as in the example of FIG. 12, which illustrates an
example structure of the resource accessHistories. Referring
to FIG. 12, the accessHistories may contain the following
components:

“attribute” may have accessRightID

status: used to represent if it starts to or stop logging access

histories

<accesslnstance>: a number of access instances

Each <accesslnstance> may have the following sub-re-
sources to record access details about it:

method: the method involved in this access. It may be

Create, Retrieve, Update, Delete, Subscription, or
Announce.

requestorID: the ID of the entity who requests this access

resourceURI: the URI of the resource where this access

should operate

timeStamp: the time when this access takes place

sequenceNumber: an automatically incremental integer to

stand for access sequence

result: the result of this operation

Ifthe method is Update, it stands for the new value ofthe
resourceURI

It could be Success or Failure for other methods. It is
possible to define different types of Failures here for
fault management.

Resource accessHistories may be stored at M2M Devices
and GWs. Whenever there is an operation onto a local
resource at a device/GW, an accessInstance may be automati-
cally created and added into accessHistories. As a resource,
accessHistories can be accessed in many cases by NREM for
management purpose. In other words, NREM can create/
retrieve/update/delete accessHistories on D/GREM. The fol-
lowing functions may be implemented:

US 9,426,222 B2

23

Create: NREM requests D/GREM to create accessHisto-
ries on a particular “method” and/or “resourceURI” for
a certain time interval or forever;

Retrieve: NREM retrieves all or some <accessInstance>
from D/GREM;

Update: NREM requests D/GREM to disable or resume
access history function by changing the value of “sta-
tus”; and

Delete: NREM requests D/GREM to delete all or some
<accesslnstance>.

<accesslnstance> shown in FIG. 12 is a flat structure,

which can be re-structured based on “method” as shown in
FIG. 13 and/or on “requestorID” as shown in FIG. 14, form-
ing 2-level and 3-level hierarchical structures, respectively.
FIG. 13 illustrates an example structure for resource
accessHistories—structured based on “method”. FIG. 14
illustrates an example structure for resource accessHisto-
ries—structured based on “method” and “requestorID”. Such
hierarchical structures may be useful to expedite query/re-
trieve operations on resource accessHistories, especially at
resource-constrained M2M Devices.

Example Call Flows for Management Authority
Delegation for xREM

Management authority of the M2M devices and/or GWs
may be delegated to another M2M server. The management
authority of M2M Devices can be delegated to another M2M
GW, as well. In accordance with embodiments of the present
disclosure, management authority delegation procedures for
M2M Devices and GWs are described herein.

Management Authority Delegation

Delegator-Initiated Delegation

FIG. 15 illustrates a message flow diagram of procedures
for management authority delegation (delegator-initiated).
Referring to FIG. 15, N-SCL-1 delegates D/G-SCL to
another N-SCL, N-SCL X. N-SCL 1 issues “Delegation
Preparation” to D/G-SCL after the D/G-SCL comes online.
The “Delegation Preparation” may be used to instruct D/G-
SCL to be ready for ongoing delegation operations. The D/G-
SCL may send back “Delegation Response” to N-SCL 1. D/G
may stay online afterwards. N-SCL 1 may issue “Delegation
Request” to the N-SCL X chosen as the new management
authority for D/G SCL. The “Delegation Request” may con-
tain the following information:

the URI and/or authentication-related information of D/G-

SCL to be delegated; and

the reason for requesting management delegation.

N-SCL X may send back “Delegation Response” to
N-SCL 1 by answering YES or NO to “Delegation Request”.
N-SCL 1 may repeat to send “Delegation Request” to other
N-SCL Xs until finding an N-SCL X which agrees to accept
delegation or after trying the maximum times.

N-SCL 1 may issue “Delegation Inform” to D/G-SCL. If
none of the N-SCL Xs agrees, N-SCL 1 may use this message
to inform D/G-SCL of cancelling the ongoing delegation.
Then D/G can operate as it usually does. It can go to sleep
onwards. The whole delegation process may then stop. Oth-
erwise, “Delegation Inform” will contain the information
about the N-SCL X, which agrees to accept delegation. D/G-
SCL may send back “Delegation Response.”

N-SCL 1 issues “Delegation Start” to N-SCL X to trigger it
to perform delegation operations.

N-SCL X may issue “Delegation Execution” to D/G-SCL.
D/G-SCL may perform authentication on N-SCL X.

D/G-SCL. may send back “Delegation Response” to
N-SCL X. D/G-SCL may update its management objects by

10

25

40

45

24

setting N-SCL X as its new management authority. N-SCL X
may update its management objects by including D/G-SCL as
the managed entity under its authority.

N-SCL X may issue “Delegation Finish” to N-SCL 1.

N-SCL 1 may send back “Delegation ACK” to N-SCL X.

N-SCL 1 may update its management objects by removing
D/G-SCL from its management authority.

N-SCL 1 may update its management objects by adding
N-SCL X as the entity it delegates the management authority
to.

N-SCL X may update its management objects by adding
N-SCL 1 as the entity it is delegated the management author-
ity from.

Device-Initiated Delegation

FIG. 16 illustrates an example message flow diagram for
management authority delegation (device-initiated). This
may be applied in scenarios where D/G actively requests
management authority delegation. The only difference from
delegator-initiated delegation is the first two steps. Referring
to FIG. 16, D/G-SCL issues “Delegation Request” to N-SCL
1. D/G-SCL can indicate the reason for requesting delegation
in this message. N-SCL 1 may send back “Delegation
Response” to D/G-SCL by informing D/G-SCL of its will-
ingness to perform delegation. N-SCL 1 may refuse to per-
form delegation. Then the whole delegation process may
stop.

Different from FIG. 16 and alternatively, D/G can directly
send “Delegation Request” to the grantee (new management
authority). Then the grantee can make request to the delegator
for approval. Example detailed procedures are shown in FIG.
17, which illustrates an example message flow diagram of
management authority delegation (device-initiated to grantee
directly). The scenario may need the delegator configure
some potential grantees to the device beforehand and may
happen when the communications between device and the
delegator meet problem.

Grantee-Initiated Delegation

In addition to delegator-initiated and device-initiated del-
egation, management authority delegation can also optionally
be initiated by the grantee. For example, FIG. 18 illustrates an
example message flow diagram for management authority
delegation (grantee-initiated). Referring to FIG. 18, N-SCL. X
may request delegation from N-SCL 1. N-SCL 1 may approve
to delegate the management authority of D/G-SCL to N-SCL
X. The meaning of each step is similar to those described with
respect to FIG. 16.

Delegation Under Gateway as a Proxy

For scenarios where some devices are behind a gateway,
the management authority delegation may be conducted via
the gateway as a proxy. For example, FIG. 19 illustrates an
example message flow diagram for management authority
delegation (gateway as a proxy). Referring to FIG. 19,
N-SCL-1 may delegate D-SCL to N-SCL X via G-SCL as a
proxy. G-SCL actually performs delegation aggregation.
Basically, G-SCL on behalf D or D' behind it, may conduct
management authority delegation with N-SCL 1 and N-SCL
X using the similar procedures in FIG. 16. When D or D'
becomes online, G-SCL will notify them of the delegation
results, i.e. the new management authority N-SCL X.

Device-to-Gateway Delegation

In an embodiment, the management authority of D-SCL is
delegated from a G-SCL to another G-SCL X. For example,
FIG. 20 illustrates an example message flow diagram for
management authority delegation (device-to-gateway del-
egation). Referring to FIG. 20, after the delegation process
among D-SCL, G-SCL and G-SCL X, G-SCL may notify
N-SCL 1 of the notification results.

US 9,426,222 B2

25
Hierarchical SCL Structure
FIG. 21 illustrates a diagram of a general scenario where:
1) The management authority relationship of all SCLs forms
a hierarchical structure; 2) SCL 4 wants to delegate its man-
agement authority on SCL 9 to SCL 3. It basically follows
three steps:
Step 1: SCL 4 issues “Delegation Request” hop-by-hop via
SCL 2 and SCL 1, eventually to SCL 3.
Step 2: SCL 3 sends “Delegation Response” back to SCL 4
Step 3: SCL 4 issues “Delegation Inform” to SCL. 9
Step 4: SCL 3 and SCL 9 conduct “Delegation Execution”-
related interactions.
Step 5: SCL 3 sends “Delegation Notification” hop-by-hop
via SCL 1 and SCL 2, eventually to SCL 4.
SCL 1, SCL 2 and SCL 4 may update their management
objects accordingly to reflect this management
authority change.

Example xREM Authority Delegation

The NREM is responsible for managing DREM and
GREM. But ETSI xREM does not describe the concept of
remote entity management (XxREM) authority nor xREM
authority delegation. xREM authority of M2M Devices or
GWs needs to be delegated from an M2M Server to another
M2M Server for reasons such as M2M Server replacement,
load balancing and mobility. Even the xREM authority of
M2M Devices can be delegated from an M2M Server to an
M2M GW ifthe M2M Devices become behind the M2M GW,
and vice versa.

Although OMA-DM defines high-level procedures for cli-
ent authority delegation, it does not consider sleeping devices
or the M2M GW in the middle. As a result, it cannot be
applied directly for ETSI M2M xREM. ETSI M2M xREM
needs to have its own xREM authority delegation.

When an M2M Device or GW successfully registers with
an M2M Server, the M2M Server basically possesses the
XREM authority over the M2M Device/GW. When M2M
Devices are behind an M2M GW, the GW has xREM author-
ity over those M2M Devices. Therefore, xREM authority
delegation could mean different scenarios:

Case 1: an M2M Server delegates its xREM authority to
another M2M Server

Case 2: an M2M Server delegates its xREM authority to an
M2M GW

Case 3: an M2M GW delegates its xXREM authority to an
M2M Server

Case 4: an M2M GW delegates its xREM authority to
another M2M GW

Example Functionalities for xREM

As a result, ETSI M2M xREM needs to have new func-
tionalities to support xXREM authority delegation. The Net-
work Remote Entity Management (NREM) needs to have the
following functionalities: Supports xXREM authority delega-
tion. NREM has xREM authority over M2M Devices and
M2M Gateways. NREM needs to have the following func-
tionalities to support xREM authority delegation. Delegates
its xREM authority over M2M Devices and M2M Gateways
to another M2M Server or delegates its XREM authority over
M2M Devices to an M2M Gateway. Processes xREM author-
ity delegation requested from another M2M Server or an
M2M Gateway.

The Gateway Remote Entity Management (GREM) needs
to have the following functionalities: when acting as a remote
management proxy for M2M Devices of the managed M2M

10

15

20

25

30

35

40

45

50

55

60

65

26

area network. Supports XREM authority delegation. When
M2M Devices are behind the M2M Gateway, the M2M Gate-
way has xREM authority over those M2M Devices. To sup-
port xREM authority delegation, the M2M Gateway needs to
have the following functionalities: Delegates its xREM
authority over M2M Devices to an M2M Server or to another
M2M Gateway; processes xREM authority delegation mes-
sages from another M2M Server or an M2M Gateway; sup-
ports xREM authority delegation. The M2M Server has the
xREM authority over the M2M Gateway.

The M2M Gateway needs to have the following function-
alities: actively requests the M2M Server to delegate its
xREM authority over the M2M Gateway to another M2M
Server; and passively processes xREM authority delegation
messages from M2M Servers.

The Device Remote Entity Management (DREM) needs to
have the following functionalities: supports xXREM authority
delegation. The M2M Server has the xREM authority over the
M2M Device.

The M2M Device needs to have the following functional-
ities: actively requests the M2M Server to delegate its xREM
authority over the M2M Device to another M2M Server; and
passively processes XREM authority delegation messages
from M2M Servers.

Example Non-RESTful Management Commands
Support

Provided herein are embodiments of the systems, appara-
tuses and methods for M2M xREM in which the non-REST-
ful management commands may be represented and realized
in a RESTful manner. Examples of such non-RESTful man-
agement commands may include any of a reboot command
for rebooting a device; a download command for instructing
a recipient of download command to download a file; an
execute command for executing a specific process; a copy
command for duplicating and/or moving a resource from one
location to another location. The reboot and download com-
mands may be, for example, defined in accordance with BBF-
TR069. The execute and copy commands may be, for
example, the “Exec” command of OMA-DM and the “Copy”
command of OMA-DM; respectively. The non-RESTful
management commands may also include other commands,
such as, for example, one or more commands used to control
controllable elements (e.g., actuators) of M2M Devices
equipped with such controllable elements.

In one or more embodiments, a resource, referred to as
resource commands, may be used to represent the non-REST-
ful management commands and to support execution of the
non-RESTful management commands (“command execu-
tion”) in different ways as designated by one or more issuers
of the commands. The resource commands may be used to
facilitate issuance and command execution of the non-REST-
ful management commands at a device using any of the
RESTful methods.

Further, the resource commands may be used to facilitate,
for any of the non-RESTful management commands, an
immediate command execution, a command execution after a
(e.g., random) delay, a single command execution (e.g., a
one-time command execution) and/or multiple repeated com-
mand execution.

Referring to FIG. 22A, a block diagram illustrating an
example data structure of an <sclbase> having an instance of
a data structure representative of the resource commands
(“<commandInstance>"). The <commandlnstance> may
include a number of data-structure elements, such as those
shown in FIG. 22A. Among these data-structure elements

US 9,426,222 B2

27

shown is a data-structure element representative of an
attribute (“attribute”), and data-structure elements represen-
tative of a sub-resources execMode, execParameters, exec-
StartTime, execDuration, execResult, execStatus, request-
orlD and actorID. The “attribute” may include an
accessRightID, such as discussed supra.

The execMode may be used to specify certain modes of
command execution of the non-RESTful management com-
mand of the <commandInstance>. The execMode data-struc-
ture element may include one or more entries representative
of the modes for command execution (“command-execution
modes”). Examples of the command-execution modes may
include any of an Immediate Once mode; Immediate and
Repeatedly mode, Random Once mode and Random and
Repeatedly mode.

The Immediate Once mode specifies that command execu-
tion is to occur immediately and only once. The Immediate
and Repeatedly mode specifies that command execution is to
occur immediately and repeatedly. Any time interval between
any two command executions may be specified in the exec-
Parameters. The Random Once mode specifies command
execution is to occur after a (e.g., random) delay and only
once. The delay may be specified in the execParameters. The
Random and Repeatedly mode specifies command execution
is to occur after a (e.g., random) delay and repeatedly. The
delay and any interval between any two command executions
may be specified in the execParameters.

The execParameters may be a container, and include infor-
mation associated with the command-execution modes. In
addition to information already noted, the information may
include information for (i) specifying how to backoffa certain
time before command execution in the Random Once and
Random Repeatedly modes, and/or (2) specifying a fre-
quency for repeated command execution in the Immediate
and Repeatedly mode and in the Random and Repeatedly
mode.

The execStartTime may specify an actual last time of a
command execution. The execDuration may specify a
required duration for continued command execution. The
execResult may specify a returned value for a last command
execution. The execStatus may specify a current status of the
command execution. This status may be, for example, fin-
ished (successful or failure), pending, in-operation, etc. The
requestor]D may specify an ID (e.g., a URI) of a requestor
requesting a command execution be invoked. The actorID
may specify an ID (e.g., a URI) of a receiver invoking the
command execution.

FIG. 22B is a block diagram illustrating an example data
structure representative of the commands resource (“com-
mands-resource structure”). The commands-resource struc-
ture may include a number of data-structure elements, such as
those shown in FIG. 22B. And many of the data-structure
elements of this commands-resource structure are similar to
the commands-resource structure of FIG. 22A. Among these
data-structure elements shown is a data-structure element
defining an attribute (commands-resource “attribute”), and
sets of data-structure elements representative of a respective
collection of commands (“<command>"). Each instance of
the <command>, as a resource, represents a single command,
and includes data-structure elements representative of
attributes and/or sub-resources of the <command> instance.
These <command>-instance attributes and/or sub-resources
may specify how to trigger and execute the command execu-
tion. Among the <command>-instance attributes and/or sub-
resources is a data-structure element representative of an
execEnable sub-resource (“execEnable”). The execEnable,
which may also be referred to as an “execute” attribute, may

10

15

20

25

30

35

40

45

50

55

60

65

28

facilitate invoking a change in a state of a command execu-
tion. For example, the execEnable may be a Boolean variable,
and certain values of the variable may invoke a command
execution, a pause-command execution, a resume-command
execution and/or a cancel-command execution. As such, any
of the command execution, pause-command execution,
resume-command execution and cancel-command execution
may be invoked by modifying the value of execEnable. The
value of execEnable may be modified using the RESTful
methods.

For example, a RESTful method UPDATE may be used to
invoke (e.g., trigger) a command execution of the <com-
mand> instance. By specifying a first value (e.g., a“1”) in the
RESTful method UPDATE to . . . /commands/<command>/
execEnable, a command execution may be invoked.

The RESTful methods UPDATE and DELETE may be
used to cancel (stop) a command execution of the <com-
mand> instance. By specifying a second value (e.g., a “0”) in
the RESTful method UPDATE to . . . /commands/<com-
mand>/execEnable, a cancel-command execution may be
invoked to stop the <command> instance. Additionally or
alternatively, issuing the RESTful method DELETE. .. /com-
mands/<command>/, a cancel-command execution may be
invoked to stop the command execution of the <command>
instance prior to such the <command> instance being deleted
in accordance with the RESTful method DELETE.

In addition to the execEnable, the <command>-instance
sub-resources may include data-structure elements represen-
tative of sub-resources, such as execBaseDelay, exceAddi-
tionalDelay, execFrequency, execNumber, execResource,
execStatus, execResult, execIssuer and execParameters.

The execBaseDelay may specify a minimum delay before
a command execution of the <command> instance. The exec-
AdditionalDelay may facilitate generation of a random addi-
tional delay. A total delay is a sum of execBaseDelay plus the
random additional delay. The execBaseDelay and execAddi-
tionalDelay may include information for (i) specifying how to
backoff a certain time before command execution in the Ran-
dom Once and Random Repeatedly modes, and/or (2) speci-
fying a frequency for repeated command execution in the
Immediate and Repeatedly mode and in the Random and
Repeatedly mode.

The execFrequency may specify a frequency for repeated
command executions of the <command> instance. The exec-
Number may specify anumber of times a command execution
of the <command> instance may be repeatedly. The execRe-
source may specify a resource URI for the <command>
instance to undergo command execution. The resource URI
points to a group resource that includes a group of resources.
This way, command execution of multiple <command>
instances may be invoked as a function of the resource URI
that points to the group resource. The execResource may be
optional. If, for example, the <command> instance is subor-
dinated as a sub-resource under the <command> instance,
execResource might not be necessary.

The execStatus may specify a current status of a command
execution of <command> instance. The status may be, for
example, pending, running, paused, stopped, resumed, fin-
ished and successful, finished and failure, and the like. The
execResult may store an execution result of a command
execution of a <command> instance. The execResult can be
modeled as a sub-resource of the <command> instance if
there are multiple results generated, for example, if execRe-
source points to a group of resources.

The execIssuer may specify an ID of an issuer that issues a
request to invoke command execution of the <command>

US 9,426,222 B2

29

instance. The execParameters may be a container (e.g., a
placeholder) for storing parameters specific to the <com-
mand> instance.

Referring now to FIG. 22C, a block diagram illustrating
another example commands-resource structure is shown.
This commands-resource structure may include a number of
data-structure elements, such as those shown in FIG. 22C.
And many of the data-structure elements of this commands-
resource structure are similar to the commands-resource
structure of FIG. 22B. Among the data-structure elements
shown in FIG. 22C are data-structure elements defining a
number of attributes, namely, a commandID attribute, a
execDisable attribute, a execPause attribute, a execResume
attribute and a execResult attribute.

The execEnable attribute, which may also be referred to as
an “execute” attribute, may facilitate invocation of a com-
mand execution of the <command> instance. A RESTful
method UPDATE to the execEnable attribute may invoke a
command execution of the <command> instance. A payload
of the RESTful method UPDATE may be empty or set to a
value (e.g. execEnable=1).

The execDisable attribute, which may also be referred to as
“cancel” attribute, may facilitate invocation of cancel-com-
mand execution of the <command> instance. A RESTful
method UPDATE to the execDisable attribute may invoke a
cancel-command execution of the <command> instance. A
payload of the RESTful method UPDATE may be empty or
set to a value (e.g. execDisable=1).

The execPause attribute may facilitate invocation of a can-
cel-command execution of the <command> instance. A
RESTful method UPDATE to the execPause attribute may
invoke a pause-command execution of the <command>
instance. A payload of the RESTful method UPDATE may be
empty or set to a value (e.g. execPause=1).

The execResume attribute may facilitate invocation of a
resume-command execution of the <command> instance. A
REST{ul method UPDATE to the execResume attribute may
invoke such resume-command execution. A payload of the
RESTf{ul method UPDATE may be empty or set to a value
(e.g. execResume=1).

The foregoing illustrates that the data structures of FIGS.
22A, 22B and 22C facilitate command execution of non-
RESTful management commands using the RESTful meth-
ods. This includes facilitating command execution of non-
RESTful management commands of BBF-TR-069 and
OMA-DM. For example, Reboot of BBF-TR-069 may be
represented in the data structure as . . . /commands/reboot/.
Download of BBF-TR-069 may be represented in the data
structure as . . . /commands/download/. Exec of OMA-DM:
may be represented in the data structure as . . . /commands/
exec/. Copy of OMA-DM may be represented in the data
structure as . . . /commands/copy/.

The <command> instances may be used to model and
represent other management APIs or Remote Procedure Calls
(RPCs), as well. The resource commands may be placed
under and as a sub-resource of an existing “resource” so that
each commands/<command> may be automatically executed
on the “resource” if needed when it is triggered. In addition,
“execResource” can be used to designate the resource on
which commands/<command> may be executed. In this
approach, the resource commands can be placed at a central-
ized position and not necessary to be immediately under the
resource which “execResource” refers to. Taking OMA-DM
FUMO as an example, two approaches are illustrated as
below.

Approach 1: Use “execResource” to Refer to Operations in
FUMO

10

15

20

25

30

35

40

45

50

55

60

65

30

As shown in FIG. 23, OMA FUMO has three operations:
Download, Update, and DownloadAndUpdate. In OMA-
DM, those three operations are triggered by a DM Server
issuing a non-RESTful Exec command to a DM Client. In
order to invoke those three operations in a RESTful manner,
Exec is modeled as a <command> exec, which has some
attributes as listed in FIG. 23. Two important attributes are
execEnable and execResource.

When a M2M application of the network domain (“NA”)
needs to perform “Download” operation, it simply issues an
UPDATE method to . . . /mgmtObjs/commands/exec/ to set:

execEnable=1 and,

execResource=. . . /mgmtObjs/FUMO/Download

When an NA needs to perform “Update’ operation, it sim-
ply issues an UPDATE method to . . . /mgmtObjs/commands/
exec/ to set:

execEnable=1 and,

execResource=. . . /mgmtObjs/FUMO/Update

When an NA needs to perform “Download AndUpdate”
operation, it simply issues an UPDATE method to . . . /mgm-
tObjs/commands/exec/ to set:

execEnable=1 and,

execResource=. ../mgmtObj s/FUMO/Download AndUp-
date.

Approach 2: Use Commands to Re-Model Operations in
FUMO

As shown in FIGS. 24A-24B, another approach is to
directly remodel all FUMO operations as a <command>
resource. To trigger to execute an operation, only an UPDATE
to execEnable of a corresponding <command> is needed. As
a result, there is no need to define an additional Exec com-
mand at all. In this approach, “execResource” is not required.

As illustrated in FIG. 24 A, three FUMO operations may be
remodeled, respectively, as three <command> resources (i.e.,
download, update, downloadAndUpdate) under the resource
commands. Since each FUMO operation has some child/leaf
nodes, they need to be modeled as attributes under “execPa-
rameters”. Using downloadAndUpdate as an example,
“PkgURL” may be added as an attribute of . . . /commands/
download AndUpdate/execParameters.

When an NA needs to perform “downloadAndUpdate”
operation, it simply issues an UPDATE method to . . . /mgm-
tObjs/FUMO/commands/download AndUpdate/ to set:

execEnable=1 and,

PkgURIL=the URL of the corresponding package.

Ifthe old FUMO operations need to be kept as they are, the
re-modeled commands may be placed as sub-tree under the
node Ext, as depicted on FIG. 24B.

In one or more embodiments, the commands-resource
structure may support multiple issuances of the same non-
RESTful management command (e.g., multiple NAs or other
issuers may request command execution of the same non-
RESTful management command).

Two examples of commands-resource structures that sup-
port multiple issuances of the same non-RESTful manage-
ment command are shown in FIGS. 25A and 25B. The com-
mands-resource structure shown in FIG. 25A is similar to the
commands-resource structure of FIG. 22A, and extends the
commands-resource structure of FIG. 22 A by defining <com-
mand> as a collection of multiple instances, namely, <com-
mandInstances>. The procedures as described previously
may be used to invoke a command execution of a <com-
mand> and generate a corresponding <commandInstance>.
The <commandInstance> may maintain corresponding
<command> instances which are issued by multiple NAs.
Each command execution of generated <commandInstance>
may be stopped or modified by accessing its attributes and/or

US 9,426,222 B2

31

sub-resources, as described above. For example, a command
execution of an existing <commandlnstance> may be
stopped using the RESTful method UPDATE to modity
<commandInstance>/execEnable from 1 to 0. The <com-
mandInstance> and/or a change in a state of the command
execution of the <commandInstance> may be accessed and
manipulated using other RESTful methods, as well.

The commands-resource structure shown in FIG. 25B is
similar to the commands-resource structure of FIG. 22B, and
extends the commands-resource structure of FIG. 22B by
defining <command>/execRequests (which may also be
referred to as <execlnstances> as a collection of multiple
request instances, namely, <requestlnstances>). The proce-
dures described previously will be used to invoke a command
execution or change in state of the command execution of a
<command> and/or generate a corresponding <requestln-
stance>. The <requestlnstance> may maintain corresponding
<command> instances (e.g., those issued by NAs). Each
command execution of a generated <requestlnstance> may
be stopped or modified by accessing its attributes, as
described above. For example, a command execution of an
existing <requestInstance> may be stopped using the REST-
ful method UPDATE onto the <requestInstance>/execEn-
able.

The <requestlnstance> and/or a change in a state of the
command execution of the <requestlnstance> may be
accessed and manipulated using other RESTful methods, as
well.

FIG. 26A is a block diagram illustrating an example struc-
ture of resource commands. The resources commands may
have the sub-resources of <command>, and the following
attributes:

accessRightID;

creationTime;

lastModified Time;

expirationTime;

searchStrings;

contentType, which may be formatted at FFS;

molD;

originalMO; and

description (i.e., a text-format description of commands
resource).

The <command> can be modeled as attribute, as well.

FIG. 26B is a block diagram illustrating an example struc-
ture of resource commands. The resources commands may
have the sub-resources subscriptions and sub-resources of
<command> along with the following attributes:

accessRightID;

creationTime;

lastModified Time;

expirationTime;

searchStrings;

contentType, which may be formatted at FFS;

molD;

originalMO; and

description (i.e., a text-format description of commands
resource).

The <command> can be modeled as attribute, as well.

Each <command> may include the sub-resources (i) sub-
scriptions, and (ii) execRequests. The execRequests may be a
placeholder for storing requests from different issuers for
invoking command execution of the same non-RESTful man-
agement commands. In one or more embodiments, these
requests may have different arguments for the <command>
instance.

Each <command> instance may have the following
attributes:

5

10

15

20

25

30

35

40

45

50

55

60

65

32

accessRightID;

creationTime;

lastModified Time;

expirationTime;

searchStrings;

content Type, which may be formatted at FFS;

molD;

originalMO; and

description (i.e., a text-format description of commands
resource).

The <command> can be modeled as attribute, as well.

Each <command>, as shown in FIG. 27 A, for example, has
a number of <commandInstance> as sub-resources. Each
<command> has the following attributes:

accessRightID:

creationTime:

lastModified Time:

execEnable: a Boolean variable used to trigger to execute
the command.

If execEnable is changed from 1 to 0, then <commandIn-
stance> may be stopped. execEnable can be adjusted to sup-
port more options such as pause, etc.

execMode: used to specify how the command may be
executed.

Immediate Once: the receiver executes the command
immediately and only once.

Immediate and Repeatedly: the receiver executes the com-
mand immediately but repeatedly. The interval between two
executions is specified by the container execParameters.

Random Once: the receiver executes the command after a
random delay and only once. The random delay is specified in
execParameters.

Random and Repeatedly: the receiver executes the com-
mand after a random delay and repeatedly. The random delay
and the interval between two executions are specified by the
container execParameters.

execBaseDelay: to specify the minimum delay before
<commandInstance> can be executed.

execAdditionalDelay: used to generate a random addi-
tional delay. The total delay may be a sum of execBaseDelay
plus the random additional delay.

execFrequency: to specify the frequency that <command-
Instance> may be repeatedly executed.

execNumber: to specify how many times <commandIn-
stance> may be repeatedly executed.

execResource: may represent a resource URI on which
<commandInstance>may be executed. The resource URI can
point to a group resource which includes a group of resources;
then the command may be executed on each of those
resources. execResource is optional. If <commandInstance>
is placed as a sub-resource under the resource that <comman-
dInstance> may be executed on, then execResource might not
be required.

execStatus: may represent a current status of <command-
Instance>. The status may be any of pending, running and
finished (successful or failure).

execlssuer: may represent the issuer that issues <com-
mand>.

execParameters: is the placeholder for storing parameters
specific to each single command.

execBaseDelay and execAdditionalDelay are used to
specify how to backoff a certain time before executing <com-
mandInstance> in Random Once and Random Repeatedly
modes. execFrequency and execNumber are used to specify
the frequency to execute the same <commandlnstance>
under Immediate and Repeatedly and Random and Repeat-
edly modes.

US 9,426,222 B2

33

The above attributes beginning with “exec” can be mod-
eled as sub-resource too. The above attributes beginning with
“exec” can be applied to normal RESTful CRUD operations
(i.e., Create, Retrieve, Delete, Update) to add more flexibility
to manipulate a resource.

Each <commandInstance>, as shown in FIG. 27B, may
have the following attributes:

accessRightID:

creationTime:

lastModified Time:

execEnable: a Boolean variable used to trigger to execute
the command. If execEnable is changed from 1 to O, then
<commandInstance> may be stopped. execEnable may be
adapted to support more options such as pause, etc.

execMode: is used to specify how the command may be
executed.

Immediate Once: the receiver may execute the command
immediately and only once.

Immediate and Repeatedly: the receiver may execute the
command immediately but repeatedly. The interval between
two executions is specified by the container execParameters.

Random Once: the receiver may execute the command
after arandom delay and only once. The random delay may be
specified in execParameters.

Random and Repeatedly: the receiver may executes the
command after a random delay and repeatedly. The random
delay and the interval between two executions may be speci-
fied by the container execParameters.

execBaseDelay: used to specify the minimum delay before
<commandInstance> can be executed.

execAdditionalDelay: used to generate a random addi-
tional delay. The total delay may be the sum of execBaseDe-
lay plus the random additional delay.

execFrequency: used to specify the frequency that <com-
mandInstance> may be repeatedly executed.

execNumber: used to specify how many times <comman-
dInstance> may be repeatedly executed.

execResource: may represent a resource URI on which
<commandInstance> may be executed. The resource URI
may point to a group resource that includes a group of
resources; then the command may be executed on each of
those resources. execResource is optional. If <commandIn-
stance> is placed as a sub-resource under the resource which
<commandInstance>may be executed on, then execResource
might not required.

execStatus: may represent a current status of <command-
Instance>. This status may be any of pending, running and
finished (successful or failure).

execlssuer: may represent the issuer that issues <com-
mand>.

execParameters: is the placeholder for storing parameters
specific to each single command.

The above attributes beginning with “exec” can be mod-
eled as sub-resource, as well.

Referring now to FIG. 28A, a block diagram illustrating
another example commands-resource structure is shown.
This commands-resource structure may include a number of
data-structure elements. And many of the data-structure ele-
ments of this commands-resource structure are similar to the
commands-resource structure of FIG. 22C. As noted above,
the commands-resource structure supports multiple issuers’
(e.g., multiple NAs’) requests for command execution of the
same non-RESTful management commands (as identified by,
for example, the attribute commandID). To facilitate such
support, in one embodiment, a different <command> may be
created for each request. Each <command> may have difter-
ent name, but its attribute commandID may be the same as

10

15

20

25

30

35

40

45

50

55

60

65

34

another. The attribute commandID (which may be catego-
rized by type of command) specifies which command(s) to
invoke a change in a state of the command. The sub-resource
execRequests of <command> might not be used. Further,
each issuer may create a specific <command> under the
resource commands. The RESTful method UPDATE may be
used to invoke command execution of the created <com-
mand> (e.g., use the RESTful method UPDATE onto execEn-
able attribute of the resource <command>).

Alternatively, the sub-resource execRequests may be used
to store the multiple requests for command execution of the
same <command>. The issuer may use the RESTful method
UPDATE onto execEnable attribute of <command>to invoke
a command execution of the <command>. Accordingly, a
receiver may create a <requestlnstance> under . . . /com-
mands/<command>/execRequests/ for this issuer. The issuer
may cancel, pause and resume this generated <requestln-
stance> using the RESTful method UPDATE onto the
<requestlnstance>’s attributes, execDisable, execPause and
execResume, respectively

In addition, the issuer can delete this generated <request-
Instance> using the RESTful method DELETE operation
onto the commands resource . . . /commands/<command>/
execRequests/<requestlnstance>. The <command>’s
attributes execDisable, execPause, execResume might not be
used.

As set forth in details above the four attributes (execEn-
able, execDisable, execPause, execResume) are configured
and used to invoke a command execution, a pause-command
execution, a resume-command execution and a cancel-com-
mand execution, respectively, of a command (<command> or

<requestlnstance>).
As an alternative, four special <command> resources may
be created in the data structure; namely . . . /commands/

enable, . . . /commands/disable, . . . /commands/pause, and . .
. /commands/resume. The four special commands may only
have respective “execResource” attributes.

The. ../commands/enable may be used to invoke a general
command execution. For example, issuing the RESTful
method CREATE or UPDATE operation onto “ . . . /com-
mands/enable” resource with its attribute execResource set as
execResource=" . . . /commands/<command>" to invoke a
command execution of the ““ . . . /commands/<command>".

The.../commands/disable may be used to invoke a may be
used to invoke a general cancel-command execution of . . .
/commands/<command> (or . . . /commands-/<command>/
execRequests/<requestlnstance>). For example, issuing the
RESTful method CREATE or UPDATE onto . . . /commands/
disable resource with its attribute execResource set as
execResource= . . . /commands/<command> (or . . . /com-
mands/<command>/execRequests/<requestlnstance>) to
invoke the cancel-command execution of . . . /commands/
<command> (or . . . /commands/<command>/execRequests/
<requestlnstance>).

The . . . /commands/pause may be used to invoke a pause-
command execution of an existing . . . /commands/<com-
mand> (or . . . /commands/<command>/execRequests/<re-
questlnstance>). For example, issuing the RESTful method
CREATE or UPDATE onto./commands/pause resource with
its attribute execResource set as execResource= . . . /com-
mands/<command> (or . . . /commands/<command>/ex-
ecRequests/<request-Instance>) may invoke a pause-com-
mand execution of the . . . /commands/<command> (or . . .
/commands/<command>/execRequests/<request-In-
stance>).

The . . . /commands/resume may be used to invoke a
resume-command execution of an existing . . . /commands/

US 9,426,222 B2

35

<command> (or . . . /commands/<command>/execRequests/
<requestlnstance>). For example, issuing the RESTful
method CREATE or UPDATE onto./commands/resume
resource with its attribute execResource set as execRe-
source= . . . /commands/<command> (or . . . /commands/
<command>/execRequests/<requestlnst-ance>) may invoke
the resume-command execution.

Example Message Flow Diagrams for xREM
Command Management

FIGS. 29A-29R are message flow diagrams illustrating
example message flows for xREM of the resource commands.
The message flows of FIGS. 29A-29R are described with
reference to the commands-resource structure of FIGS. 22C,
25B and 28A-28D. The message flows may be carried out
using other structures of the resource commands or <com-
mands>, as well.

Referring now to FIG. 29A, a message flow diagram illus-
trating example message flow for creating a resource-com-
mand structure is shown. The resource-command structure
created using the messages flow of FIG. 29A may include
some or all of the resource-command structure shown in
FIGS. 22C, 25B and 28A. For example, the resource-com-
mand structure may include all of the elements of the <com-
mand> shown in such Figures. Alternatively, the resource-
command structure may include a subset of the elements of
the <command> shown. Such subset may include a subset of
the attributes and/or sub-resources of the <command>. By
way of example, the resource-command structure may
include (i) attributes, such as, for example, the “attribute”,
execEnable and commandID; and (ii) sub-resources such as,
for example, the execParameters, execRequests and subscrip-
tions. As another example, the resource-command structure
may include (i) attributes, such as, for example, the
“attribute”, execEnable, execDisable, execPause, execRe-
sume and commandID; and (ii) sub-resources such as, for
example, the execParameters, execRequests and subscrip-
tions. As yet another example, the resource-command struc-
ture may include (i) attributes, such as, for example, the
“attribute”, execEnable, execDisable and commandID; and
(i) sub-resources such as, for example, the execParameters,
execRequests and subscriptions. The resource-command
structure may include other combinations of the elements
(e.g., attributes and sub-resources) of the <command> shown
in the FIGS. 22C, 25B and 28A.

The resource-command structure may also include other
elements of the <command> not shown in the FIGS. 22C,
25B and 28A, as well. These other elements may be included
in the resource-command structure in combination with any
of the combinations of the elements of the <command>
shown in the FIGS. 22C, 25B and 28A.

To initiate creation of the resource-command structure, an
issuer may issue a RESTful method CREATE to the M2M
Server. The issuer may be, for example, any of the NA, M2M
Device and M2M GW. The M2M Device or M2M GW, as the
issuer, may issue the RESTful method UPDATE responsive
to registration or as part of registering with the M2M Server.
The M2M Device, M2M GW or NA may issue the RESTful
method CREATE at other times, as well.

To facilitate creation of the resource-command structure at
a given node of the <sclbase>, the RESTful method CREATE
may include an identifier of a node (e.g., a resource) under
which the resource-command structure may be created. For
example, the RESTful method CREATE may include an
identifier of the resource <mgmtObjs> (hereinafter “<mgm-

10

15

20

25

30

35

40

45

50

55

60

65

36

tObjs> identifier”) so as to identify it as the node under which
the resource-command structure may be created.

As an alternative, the RESTful method CREATE may
include an identifier of the resource <commands> (hereinat-
ter “<commands> identifier”) to identify the resource <com-
mands> as the node under which the resource-command
structure may be created. Each of the <mgmtObjs> and
<commands> identifiers, as noted above, may be any of a
URI, link and address, for instance. For simplicity of exposi-
tion, the following assumes the resource-command structure
may be created under the resource <mgmtObjs>. The
resource-command structure, however, may be created under
any of the nodes of the <sclbase>.

The RESTful method CREATE may also include informa-
tion for populating any of the attributes of the resource-
command structure. For example, the RESTful method CRE-
ATE may include information to populate the commandID
attribute so as to indicate the type of non-RESTful command
that may be requested for execution and executed using the
resource-command structure.

The RESTful method CREATE may further include infor-
mation for populating one or more of the sub-resources (e.g.,
the parameter resources) of the resource-command structure.
For example, the RESTful method CREATE may include one
or more parameters and/or arguments for populating the exec-
Parameters sub-resource. These parameters and/or arguments
may be specific to the resource <command> and/or the non-
RESTful command. The RESTful method CREATE may also
include information for populating, in accordance with the
non-RESTful command, any of the sub-resources execMode,
execBaseDelay, execAdditionDelay, execFrequency, exec-
Number and execResource.

After receipt of the RESTful method CREATE, the M2M
Server may create the resource-command structure under the
resource <mgmtObjs> of the M2M Server. The resource-
command structure created (hereinafter “server <com-
mand>") may include all of the elements of the <command>
shown in the FIGS. 22C, 25B and 28A. Alternatively, the
server <command> may include a subset of the elements of
the <command> shown, such as, for example, a subset of the
attributes and/or sub-resources of the <command>. The
server <command> may include the “attribute”, execEnable
and commandID attributes; and the execParameters, execRe-
quests and subscriptions sub-resources, for example.

Alternatively, the server <command> may include the
“attribute”, execEnable, execDisable, execPause, execRe-
sume and commandID attributes; and the execParameters,
execRequests and subscriptions sub-resources. As yet
another example, the server <command> may include the
“attribute”, execEnable, execDisable and commandID
attributes; and the execParameters, execRequests and sub-
scriptions sub-resources. The server <command> may
include other combinations of the elements (e.g., attributes
and sub-resources) of the <command> (shown and not shown
in the FIGS. 22C, 25B and 28A), as well.

If the information for populating the attributes and/or sub-
resources of the server <command> is included in the REST-
ful method CREATE, the M2M Server may populate such
corresponding attributes and/or sub-resources with the infor-
mation provided. If information for populating any given
attribute and/or sub-resource is not provided, the M2M server
may leave such attribute and/or sub-resource as initially cre-
ated (e.g., blank or with default attributes and/or parameters).
As described in more detail below, the attributes and sub-
resources may be populated after creation ofthe server <com-
mand> by issuing to the M2M Server a RESTful method

US 9,426,222 B2

37

UPDATE, which includes information for populating the
attributes and/or sub-resources.

In response to the RESTful method CREATE, the M2M
Server may send a response message (“Response”) to the
issuer. The M2M Server may send the Response after creating
the server <command>, as shown. Alternatively, the M2M
Server may send the Response during creation of the server
<command>. The M2M Server may also send an acknowl-
edgement (“ACK/NACK”) message (not shown) to the issuer
for acknowledging receipt of the RESTful method CREATE.
No receipt of the ACK/NACK message by the issuer (e.g.,
within a certain time) may indicate non-acknowledgement of
the RESTful method CREATE by the M2M Server.

The Response may include an indication (e.g., a code) to
indicate whether the M2M Server successfully created or
failed to create the server <command>. The indication may be
one value to indicate of successful creation and another value
to indicate failure. Alternatively, the Response may include a
first indication (e.g., a code) to indicate that the M2M Server
successfully created the server <command>, and a second
indication (e.g., a code) to indicate failure to create the server
<command>. As another alternative, the M2M Server may
only issue the Response if the M2M Server successfully
created the server <command>.

The Response may include an identifier of the node
assigned to the server <command> (“server-<command>
identifier””) during creation. This server-<command> identi-
fier may be used to access the server <command>. The server-
<command>command identifier may be, for example, a URI,
link or address of the node.

The Response may also include an identifier of the node
assigned to the execEnable sub-resource (“execEnable iden-
tifier””) during creation. As described above and in more detail
below, the execEnable identifier may be used to invoke a
change in a state of command execution (e.g., invoke any of a
command execution, a cancel-command execution, a pause-
command execution and a resume-command execution).

Alternatively, the Response may also include the execEn-
able identifier; an identifier of the node assigned to the
execDisable (“execDisable identifier”) during creation, if
any; an identifier of the node assigned to the execPause (“ex-
ecPause identifier”) during creation, if any; and an identifier
of'the node assigned to the execResume (“execResume iden-
tifier””) during creation, if any. As described above and in more
detail below, each of the execEnable, execDisable, execPause
and execResume identifiers may be used to invoke a change in
a state of command execution. The execEnable may be used
to invoke a command execution. The execDisable may be
used to invoke a cancel-command execution. The execPause
may be used to invoke a pause-command execution. The
execResume may be used to invoke a resume-command
execution.

As an alternative, the M2M Server may store any of the
execEnable, execDisable, execPause and execResume iden-
tifiers, if any, in an attribute or sub-resource of the server
<command>, such as, for example, the “attribute” attribute.
This way, any of the execEnable, execDisable, execPause and
execResume identifiers so stored may be retrieved at a later
time.

Referring now to FIG. 29B, a message flow diagram illus-
trating example message flow for retrieving information from
a resource-command structure, such as the server <com-
mand>, is shown. To initiate retrieval, the NA (i.e., the issuer)
may issue a RESTful method RETRIEVE to the M2M Server.
The RESTful method RETRIEVE may include the server-
<command> identifier.

25

35

40

45

55

60

38

After receipt of the RESTful method RETRIEVE, the
M2M Server may use the server-<command> identifier to
locate the server <command>. Once located, the M2M Server
may query and obtain retrievable information (e.g., attributes,
parameters and/or arguments) from the attributes and/or sub-
resources of the server <command> having such retrievable
information (hereinafter “retrieved-attribute information”
and/or “retrieved-sub-resource information”). The retrieved-
attribute and/or retrieved-sub-resource information may
include any of'the stored execEnable, execDisable, execPause
and execResume identifiers.

After obtaining the retrieved-attribute and/or retrieved-
sub-resource information, the M2M Server may send a
Response to the NA. This Response may include the server-
<command> identifier and the retrieved-attribute and/or
retrieved-sub-resource information.

As an alternative, the RESTful method RETRIEVE may be
used to retrieve one or more select portions of the retrievable
information from the attributes and/or sub-resources of the
server <command> having such retrievable information. To
facilitate this, the RESTful method RETRIEVE may include
an identifier of each node assigned to the attributes and/or
sub-resources of the server <command> having the select
portions of the retrievable information. Using the identifier
(or identifiers, if more than one), the M2M Server may locate,
query and obtain the select portions of the retrievable infor-
mation (hereinafter “selected retrieved-attribute and/or
retrieved-sub-resource information™). The M2M Server may
then send to the NA a Response that includes the selected
retrieved-attribute and/or retrieved-sub-resource informa-
tion.

Although not shown, the M2M Server may also send an
ACK/NACK message to the issuer for acknowledging receipt
of'the RESTful method RETRIEVE. No receipt of the ACK/
NACK message by the issuer (e.g., within a certain time) may
indicate non-acknowledgement of the RESTful method
RETRIEVE by the M2M Server.

Referring now to FIG. 29C, a message flow diagram illus-
trating example message flow for deleting a resource-com-
mand structure, such as the server <command>or a collection
of server <command> instances (“server-<command>
instances”), is shown. To initiate the delete, an issuer may
issue a RESTful method DELETE to the M2M Server. The
issuer may be the NA, M2M Device or M2M GW. The M2M
Device and/or the M2M GW may issue the RESTful method
DELETE in response to a reboot, cancelation of the non-
RESTful command, de-registration, etc.

The RESTful method DELETE may include the server-
<command> identifier. Alternatively, the RESTful method
DELETE may include an identifier of a node assigned to a
resource (e.g., the server <commands>) under which the col-
lection of server-<command> instances have been created
(hereinafter “server-<commands> identifier”).

After receipt of the RESTful method DELETE, the M2M
Server may use the server-<command> identifier or server-
<commands> identifier to locate and delete the server <com-
mand> or server <commands>, respectively. This may
include deleting all attributes and/or sub-resources of the
server <command> or, for the server <commands>, deleting
each of the server-<command> instances of such server
<commands>.

In response to the RESTful method DELETE, the M2M
Server may send a Response to the issuer. The M2M Server
may send the Response after deleting the server <command>
orthe server <commands>, as shown. Alternatively, the M2M
Server may send the Response during deletion of the server
<command> or the server <commands>. The M2M Server

US 9,426,222 B2

39

may also send an ACK/NACK message (not shown) to the
issuer for acknowledging receipt of the RESTful method
DELETE. No receipt of the ACK/NACK message by the
issuer (e.g., within a certain time) may indicate non-acknowl-
edgement of the RESTful method DELETE by the M2M
Server.

The Response may include an indication (e.g., a code) to
indicate whether the M2M Server successfully deleted or
failed to delete the server <command> or the server <com-
mands>. The indication may be one value to indicate of
successful deletion and another value to indicate failure.
Alternatively, the Response may include a first indication
(e.g., a code) to indicate that the M2M Server successfully
deleted the server <command> or the server <commands>,
and a second indication (e.g., a code) to indicate failure to
delete the server <command> or the server <commands>. As
another alternative, the M2M Server may only issue the
Response if the M2M Server successfully deleted the server
<command> or the server <commands>.

FIG. 29D is a message flow diagram illustrating example
message flow for updating a resource-command structure,
such as the server <command>, with information for use in
performing the non-RESTful command is shown. FIGS. 29E-
29N are flow diagrams illustrating example message flows for
updating a resource-command structure, such as the server
<command>, to invoke command execution of a non-REST-
ful command. While the messages flow of FIG. 29D and the
message flows of FIGS. 29E-29N may use the RESTful
method UPDATE, the message flow of FIG. 29D may use the
RESTful method UPDATE to populate elements of a
resource-command structure, such as the server <command>,
with information (e.g., any of an attribute, parameter and/or
argument) that may be used in to perform the non-RESTful
command (i.e., after acommand execution has been invoked).
The message flows of FIGS. 29E-29N, however, may use the
RESTful method UPDATE to cause invocation of command
execution of the non-RESTful command.

Referring now to FIG. 29D, the NA (i.e., the issuer) may
issue a RESTful method UPDATE to the M2M Server to
initiate the update. The RESTful method UPDATE may
include the server-<command> identifier and the information
(e.g., attributes, parameters and/or arguments) for populating
the attributes and/or sub-resources of the server <command>
with such information. Like the RESTful method CREATE
above, the RESTful method UPDATE may include informa-
tion to populate the commandID attribute so as to indicate the
type of non-RESTful command that may be requested for
execution and executed using the resource-command struc-
ture.

The RESTful method UPDATE may further include infor-
mation for populating one or more of the sub-resources (e.g.,
the parameter resources) of the resource-command structure.
For example, the RESTful method UPDATE may include one
or more parameters and/or arguments for populating the exec-
Parameters sub-resource. These parameters and/or arguments
may be specific to the resource <command> and/or the non-
RESTful command. The RESTful method UPDATE may
also include information for populating, in accordance with
the non-RESTful command, any of the sub-resources exec-
Mode, execBaseDelay, execAdditionDelay, execFrequency,
execNumber and execResource.

After receipt of the RESTful method UPDATE, the M2M
Server locate the server <command> using the server-com-
mand identifier. The M2M Server may thereafter populate the
attributes and/or sub-resources of such server <command>
with the information provided. If information for populating
any given attribute and/or sub-resource is not provided, the

30

40

45

55

40

M2M server may leave such attribute and/or sub-resource as
initially created (e.g., blank or with default attributes and/or
parameters) or last modified.

In response to the RESTful method UPDATE, the M2M
Server may send a Response to the issuer. The M2M Server
may send the Response after updating the server <com-
mand>, as shown. Alternatively, the M2M Server may send
the Response during the update of the server <command>.
The M2M Server may also send an ACK/NACK message (not
shown) to the issuer for acknowledging receipt of the REST-
ful method UPDATE. No receipt of the ACK/NACK message
by the issuer (e.g., within a certain time) may indicate non-
acknowledgement of the RESTful method UPDATE by the
M2M Server.

The Response may include an indication (e.g., a code) to
indicate whether the M2M Server successfully updated or
failed to update the server <command>. The indication may
be one value to indicate of successful update and another
value to indicate failure. Alternatively, the Response may
include a first indication (e.g., a code) to indicate that the
M2M Server successfully updated the server <command>,
and a second indication (e.g., a code) to indicate failure to
update the server <command>. As another alternative, the
M2M Server may only issue the Response if the M2M Server
successfully updated the server <command>.

The Response may also include the server-<command>
identifier and/or the attributes and/or sub-resources updated.
The Response may further include the information that was
used to update the attributes and/or sub-resources or confir-
mation indicative of the same.

Referring now to FIG. 29E, a flow diagram illustrating
example message flow for updating a resource-command
structure, such as the server <command>, to invoke command
execution of a non-RESTful command is shown. To initiate
the update, the NA (i.e., the issuer) issues a RESTful method
UPDATE to the M2M Server. This RESTful method
UPDATE may include the server-<command> identifier
along with specifying the sub-resource execEnable (e.g., . . .
/<command>/execEnable). Alternatively, the RESTful
method UPDATE may include the execEnable identifier.

Responsive to this RESTful method UPDATE, the M2M
Server may send an ACK/NACK message (shown as a
Response) to the issuer for acknowledging receipt of the
RESTful method UPDATE. No receipt of the ACK/NACK
message by the issuer (e.g., within a certain time) may indi-
cate non-acknowledgement of the RESTful method UPDATE
by the M2M Server.

The M2M Server may invoke a command execution of the
non-RESTful command in accordance with the attributes
and/or sub-resources of the server <command>. The M2M
Server may perform, as part of invoking the command execu-
tion, a number of functions. These functions may include, for
example, converting or translating the command, as identified
by in the server <command> (e.g., by the commandID), into
the non-RESTful command that can be interpreted or
executed by the M2M Device or M2M GW. The functions
may also include functions for mapping attributes, param-
eters and/or arguments (“mapped attributes, parameters and/
or arguments”) between the command identified by in the
server <command> and the non-RESTful command that can
be interpreted or executed by the M2M Device or M2M GW.

The M2M Server may also create a resource <requestIn-
stance> under execRequests sub-resource to maintain and
track the invoked server <command>. The resource <request-
Instance> may include one or more of the attributes and/or
sub-resources of server <command>. The M2M Server may
inherit or import such attributes and/or sub-resources from

US 9,426,222 B2

41

the server <command> when creating the resource <request-
Instance>. Given that the server <command> may include
various combinations of elements, the resource <requestIn-
stance> may also various combinations of elements. For
example, the resource <requestlnstance> may include may
include all of the elements of the resource <requestInstance>
shown in FIGS. 25B, 28C and 28D, which may be corollaries
to the server <command> shown in FIGS. 22C, 25B and 28A,
for instance.

Alternatively, the resource <requestInstance> may include
a subset of the elements of the resource <requestlnstance>
shown. Such subset may include a subset of the attributes
and/or sub-resources of the resource <requestlnstance>. By
way of example, the resource <requestInstance> may include
the “attribute”, execEnable, execStatus, execResult and
execDisable attributes; and the subscriptions subscription
resources. As another example, the resource <requestln-
stance> may include the “attribute”, execEnable, execStatus,
execResult and execDisable, execPause, and execResume
attributes; and subscriptions sub-resource. As yet another
example, the resource <requestlnstance> may include the
“attribute”, execEnable, execStatus and execResult
attributes; and subscriptions sub-resource. The sub-resources
may include other combinations of the elements (e.g.,
attributes and sub-resources) of the server <command> and/
or the resource <requestlnstance> shown in the FIGS. 25B,
28C and 28D.

The resource <requestlnstance> may also include other
elements of the <command> not shown in the FIGS. 25B,
28C and 28D, as well. These other elements may be included
in the resource <requestInstance> in combination with any of
the combinations of the elements of the resource <requestIn-
stance> shown in the FIGS. 25B, 28C and 28D.

Upon creation of the resource <requestInstance>under the
execRequests sub-resource, the M2M Server may assign to
the resource <requestlnstance> an identifier of a node at
which the resource <requestlnstance> is created (“<request-
Instance> identifier”). This <requestInstance> identifier may
be, as noted above, any of a URI, link and address, for
instance.

The M2M server may import into the resource <request-
Instance> (or cause the resource <requestlnstance> to
inherit) some or all of the information populated into the
attributes and/or sub-resources of the server <command> that
are imported into or inherited by the resource <requestln-
stance>. Such information may include one or more param-
eters and/or arguments populated into the execParameters
sub-resource of the server <command>. The information may
also include some or all of the information populated in, for
example, the execMode, execBaseDelay, execAdditionDe-
lay, execFrequency, execNumber and execResource sub-re-
sources.

After creating the resource <requestlnstance>, the M2M
Server may send a request message (“Request”) to the M2M
Device and/or M2M GW so as to invoke a command execu-
tion at the M2M Device and/or M2M GW. The Request may
include the non-RESTful command. The Request may also
include any of the mapped attributes, parameters and argu-
ments.

Responsive to the Request, the M2M Device and/or M2M
GW may execute the non-RESTful command. The M2M
Device and/or M2M GW may send a Response to the Request
(“Command-execution Response™). This Command-execu-
tion Response may include results, if any (as denoted by the
“J 1 symbols). The M2M Server may extract and store the
results in the execResult sub-resource of the resource
<requestlnstance> for later retrieval. Alternatively and/or

25

40

45

55

42

additionally, the M2M Server may send the results in a
Response to the NA (“NA Response”). After obtaining the
results, the NA may process them.

The Command-execution Response may also include an
indication (e.g., a code) to indicate whether the M2M Device
and/or M2M GW successfully performed the command
execution of the non-RESTful command or failed to perform
the command execution of the non-RESTful command. The
indication may be one value to indicate of successtul com-
mand execution and another value to indicate failure. Alter-
natively, the Response may include a first indication (e.g., a
code) to indicate that the M2M Device and/or M2M GW
successfully performed the command execution, and a sec-
ond indication (e.g., a code) to indicate the M2M Device
and/or M2M GW f{ailed to perform the command execution.
As another alternative, the M2M Device and/or M2M GW
may only issue the Response if the M2M Device and/or M2M
GW successfully performed the command execution.

Although not shown, the M2M Server may delete the
resource <requestlnstance> when the M2M Device and/or
M2M GW fail to perform the command execution of the
non-RESTful command. The M2M Server may also delete
the server <command> and/or one or more of the server
<commands> in response to being informed that the M2M
Device and/or M2M GW failed to perform the command
execution of the non-RESTful command.

Referring now to FIG. 29F, a flow diagram illustrating
another example message flow for updating a resource-com-
mand structure, such as the server <command>, to invoke
command execution of a non-RESTful command is shown.
The message flow of FIG. 29F is similar to the message flow
of FIG. 29E, except as described herein. In the message flow
of FIG. 29F, the M2M Server may issue the Request before
creating the resource <requestlnstance>. Also, the M2M
Server may receive the Command-execution Response after
creating resource <requestlnstance>.

FIG. 29G is a flow diagram illustrating another example
message flow for updating a resource-command structure,
such as the server <command>, to invoke command execu-
tion of a non-RESTful command. The message flow of FIG.
29G is similar to the message flow of FIG. 29E, except as
described herein. In the message flow of FIG. 29G, after
creating a resource <requestlnstance> that includes the
execDisable, execPause and/or execResume attributes (or
sub-resources), the M2M Server may send to the issuer cor-
responding execDisable, execPause and/or execResume
identifiers.

Alternatively, the M2M Server may store any of the
execEnable, execDisable, execPause and execResume iden-
tifiers in an attribute or sub-resource of the resource <request-
Instance>, such as, for example, the “attribute” attribute. This
way, the execEnable, execDisable, execPause and execRe-
sume identifiers so stored may be retrieved at a later time. As
described below, anissuer (e.g., the NA) may use the execDis-
able, execPause and/or execResume identifiers to invoke a
cancel-command execution, a pause-command execution
and/or resume-command execution, respectively.

Referring now to FIG. 29H, a flow diagram illustrating
another example message flow for updating a resource-com-
mand structure, such as the server <command>, to invoke
command execution of a non-RESTful command is shown.
The message flow of FIG. 29H is similar to the message flow
of FIG. 29G, except as described herein. In the message flow
of FIG. 29G, the M2M Server may issue the Request before
creating the resource <requestlnstance>. Also, the M2M
Server may receive the Command-execution Response after
creating resource <requestlnstance>.

US 9,426,222 B2

43

FIGS. 291 and 29]J are flow diagrams illustrating example
message flows for updating a resource-command structure,
such as the server <command>, to invoke a change in state of
a command execution of a non-RESTful command. To ini-
tiate the update, the NA (i.e., the issuer) may issue a RESTful
method UPDATE to the M2M Server. This RESTful method
UPDATE may include the <requestInstance> identifier along
with specifying the sub-resource execDisable (e.g., . . .
/<command>/execDisable). Alternatively, the RESTful
method UPDATE may include the execDisable identifier
obtained via a Response sent from the M2M Server (FIG. 291)
or after retrieving it from the attributes of the resource
<requestlnstance> (FIG. 29J).

Responsive to this RESTful method UPDATE, the M2M
Server may send an ACK/NACK message (shown as a
Response) to the issuer for acknowledging receipt of the
RESTful method UPDATE. No receipt of the ACK/NACK
message by the issuer (e.g., within a certain time) may indi-
cate non-acknowledgement of the RESTful method UPDATE
by the M2M Server.

The M2M Server may then invoke a cancel-command
execution of the non-RESTful command in accordance with
the attributes and/or sub-resources of the server <command>.
The M2M Server may perform, as part of invoking the cancel-
command execution, a number of functions. These functions
may include, for example, converting or translating the can-
cel-command execution, as identified by in the resource
<requestlnstance>, into a non-RESTful command for invok-
ing a cancel-command execution of an executing non-REST-
ful command (“non-RESTful-cancelation command”). The
functions may also include functions for preparing mapped
attributes, parameters and/or arguments between the com-
mand identified by in the resource <requestInstance> and the
non-RESTful-cancelation command.

After performing the functions for invoking the cancel-
command execution, the M2M Server may send a Request to
the M2M Device and/or M2M GW so as to invoke the cancel-
command execution at such the M2M Device and/or M2M
GW. The Request may include the non-RESTful-cancelation
command. The Request may also include any of the mapped
attributes, parameters and arguments for performing the non-
RESTful-cancelation command.

Responsive to the Request, the M2M Device and/or M2M
GW may execute the non-RESTful-cancelation command.
The M2M Device and/or M2M GW may send a Command-
execution Response. This Command-execution Response
may include results, if any. The M2M Server may extract and
store the results in the execResult sub-resource of the
resource <requestlnstance> for later retrieval. Alternatively
and/or additionally, the M2M Server may send the results in
a NA Response. After obtaining the results, if any, the NA
may process them.

The Command-execution Response may also include an
indication (e.g., a code) to indicate whether the M2M Device
and/or M2M GW successfully performed the cancel-com-
mand execution of non-RESTful-cancelation command or
failed to perform the cancel-command execution of the non-
RESTful-cancelation command. The indication may be one
value to indicate of successful cancel-command execution
and another value to indicate failure. Alternatively, the
Response may include a first indication (e.g., a code) to
indicate that the M2M Device and/or M2M GW successfully
performed the cancel-command execution, and a second indi-
cation (e.g., a code) to indicate the M2M Device and/or M2M
GW failed to perform the cancel-command execution. As
another alternative, the M2M Device and/or M2M GW may

10

15

20

25

30

35

40

45

50

55

60

65

44

only issue the Response if the M2M Device and/or M2M GW
successfully performed the cancel-command execution.

Although not shown, the M2M Server may delete the
resource <requestlnstance> when the M2M Device and/or
M2M GW {ail to perform the cancel-command execution of
the non-RESTful command. The M2M Server may also
delete the server <command>and/or one or more of the server
<commands> in response to being informed that the M2M
Device and/or M2M GW failed to perform the cancel-com-
mand execution of the non-RESTful-cancelation command.

FIGS. 29K and 291 are flow diagrams illustrating example
message flows for updating a resource-command structure,
such as the server <command>, to invoke a change in state of
command execution of a non-RESTful command. To initiate
the update, the NA (i.e., the issuer) may issue a RESTful
method UPDATE to the M2M Server. This RESTful method
UPDATE may include the <requestInstance> identifier along
with specitying the sub-resource execPause (e.g., . . . /<com-
mand>/execPause). Alternatively, the RESTful method
UPDATE may include the execPause identifier obtained via a
Response sent from the M2M Server (FIG. 29K) or after
retrieving it from the attributes of the resource <requestln-
stance> (FIG. 29L).

Responsive to this RESTful method UPDATE, the M2M
Server may send an ACK/NACK message (shown as a
Response) to the issuer for acknowledging receipt of the
RESTful method UPDATE. No receipt of the ACK/NACK
message by the issuer (e.g., within a certain time) may indi-
cate non-acknowledgement of the RESTful method UPDATE
by the M2M Server.

The M2M Server may then invoke a pause-command
execution of the non-RESTful command in accordance with
the attributes and/or sub-resources of the server <command>.
The M2M Server may perform, as part of invoking the pause-
command execution, a number of functions. These functions
may include, for example, converting or translating the
pause-command execution, as identified by in the resource
<requestlnstance>, into a non-RESTful command for invok-
ing a pause-command execution of an executing non-REST-
ful command (“non-RESTful-pause command”). The func-
tions may also include functions for preparing mapped
attributes, parameters and/or arguments between the com-
mand identified by in the resource <requestInstance> and the
non-RESTful-pause command.

After performing the functions for invoking the pause-
command execution, the M2M Server may send a Request to
the M2M Device and/or M2M GW so as to invoke the pause-
command execution at such the M2M Device and/or M2M
GW. The Request may include the non-RESTful-pause com-
mand. The Request may also include any of the mapped
attributes, parameters and arguments for performing the non-
RESTful-pause command.

Responsive to the Request, the M2M Device and/or M2M
GW may execute the non-RESTful-pause command. The
M2M Device and/or M2M GW may send a Command-ex-
ecution Response. This Command-execution Response may
include results, if any. The M2M Server may extract and store
the results in the execResult sub-resource of the resource
<requestlnstance> for later retrieval. Alternatively and/or
additionally, the M2M Server may send the results in a NA
Response. After obtaining the results, if any, the NA may
process them.

The Command-execution Response may also include an
indication (e.g., a code) to indicate whether the M2M Device
and/or M2M GW successfully performed the pause-com-
mand execution of non-RESTful-pause command or failed to
perform the pause-command execution of the non-RESTful-

US 9,426,222 B2

45

pause command. The indication may be one value to indicate
of successful pause-command execution, and another value
to indicate failure. Alternatively, the Response may include a
first indication (e.g., a code) to indicate that the M2M Device
and/or M2M GW successfully performed the pause-com-
mand execution, and a second indication (e.g., a code) to
indicate the M2M Device and/or M2M GW {ailed to perform
the pause-command execution. As another alternative, the
M2M Device and/or M2M GW may only issue the Com-
mand-execution Response if the M2M Device and/or M2M
GW successfully performed the pause-command execution.

Although not shown, the M2M Server may delete the
resource <requestlnstance> when the M2M Device and/or
M2M GW fail to perform the pause-command execution of
the non-RESTful command. The M2M Server may also
delete the server <command> and/or one or more of the server
<commands> in response to being informed that the M2M
Device and/or M2M GW failed to perform the pause-com-
mand execution of the non-RESTful-pause command.

FIGS. 29M and 29N are flow diagrams illustrating
example message flows for updating a resource-command
structure, such as the server <command>, to invoke a change
in state of a command execution of a non-RESTful command.
To initiate the update, the NA (i.e., the issuer) may issue a
RESTful method UPDATE to the M2M Server. This RESTful
method UPDATE may include the <requestInstance> identi-
fier along with specifying the sub-resource execResume (e.g.,
. . . I<command>/exec-Resume). Alternatively, the RESTful
method UPDATE may include the execResume identifier
obtained via a Response sent from the M2M Server (FIG.
29M) or after retrieving it from the attributes of the resource
<requestlnstance> (FIG. 29N).

Responsive to this RESTful method UPDATE, the M2M
Server may send an ACK/NACK message (shown as a
Response) to the issuer for acknowledging receipt of the
RESTful method UPDATE. No receipt of the ACK/NACK
message by the issuer (e.g., within a certain time) may indi-
cate non-acknowledgement of the RESTful method UPDATE
by the M2M Server.

The M2M Server may then invoke a resume-command
execution of the non-RESTful command in accordance with
the attributes and/or sub-resources of the server <command>.
The M2M Server may perform, as part of invoking the
resume-command execution, a number of functions. These
functions may include, for example, converting or translating
the resume-command execution, as identified by in the
resource <requestlnstance>, into a non-RESTful command
for invoking a resume-command execution of a paused non-
RESTful command (“non-RESTful-resume command”). The
functions may also include functions for preparing mapped
attributes, parameters and/or arguments between the com-
mand identified by in the resource <requestInstance> and the
non-RESTful-resume command.

After performing the functions for invoking the resume-
command execution, the M2M Server may send a Request to
the M2M Device and/or M2M GW so as to invoke the
resume-command execution at such the M2M Device and/or
M2M GW. The Request may include the non-RESTful-re-
sume command. The Request may also include any of the
mapped attributes, parameters and arguments for performing
the non-RESTful-resume command.

Responsive to the Request, the M2M Device and/or M2M
GW may execute the non-RESTful-resume command. The
M2M Device and/or M2M GW may send a Command-ex-
ecution Response. This Command-execution Response may
include results, if any. The M2M Server may extract and store
the results in the execResult sub-resource of the resource

10

15

20

25

30

35

40

45

50

55

60

65

46

<requestlnstance> for later retrieval. Alternatively and/or
additionally, the M2M Server may send the results in a NA
Response. After obtaining the results, if any, the NA may
process them.

The Command-execution Response may also include an
indication (e.g., a code) to indicate whether the M2M Device
and/or M2M GW successfully performed the resume-com-
mand execution of non-RESTful-resume command or failed
to perform the resume-command execution of the non-REST-
ful-resume command. The indication may be one value to
indicate of successful resume-command execution and
another value to indicate failure. Alternatively, the Response
may include a first indication (e.g., a code) to indicate that the
M2M Device and/or M2M GW successfully performed the
resume-command execution, and a second indication (e.g., a
code) to indicate the M2M Device and/or M2M GW failed to
perform the resume-command execution. As another alterna-
tive, the M2M Device and/or M2M GW may only issue the
Command-execution Response if the M2M Device and/or
M2M GW successtully performed the resume-command
execution.

Although not shown, the M2M Server may delete the
resource <requestlnstance> when the M2M Device and/or
M2M GW fail to perform the resume-command execution of
the non-RESTful command. The M2M Server may also
delete the server <command>and/or one or more of the server
<commands> in response to being informed that the M2M
Device and/or M2M GW failed to perform the resume-com-
mand execution of the non-RESTful-pause command.

Referring now to FIG. 290, a message flow diagram illus-
trating example message tlow for updating a resource-com-
mand structure, such as the <requestInstance>, with informa-
tion for use in performing the non-RESTful command is
shown. Like the messages flow of FIG. 29D, the message flow
of FIG. 290 may use the RESTful method UPDATE to popu-
late elements of a resource-command structure, such as the
<requestlnstance>, with information (e.g., any of an attribute,
parameter and/or argument) that may be used in to perform
the non-RESTful command.

As shown, the NA (i.e., the issuer) may issue a RESTful
method UPDATE to the M2M Server initiate the update. The
RESTful method UPDATE may include the <requestln-
stance> identifier and the information (e.g., attributes, param-
eters and/or arguments) for populating the attributes and/or
sub-resources of the <requestlnstance> with such informa-
tion.

After receipt of the RESTful method UPDATE, the M2M
Server locate the <requestlnstance> using the <requestln-
stance> identifier. The M2M Server may thereafter populate
the attributes and/or sub-resources of such <requestInstance>
with the information provided. If information for populating
any given attribute and/or sub-resource is not provided, then
the M2M server may leave such attribute and/or sub-resource
as initially created (e.g., blank or with default attributes and/
or parameters) or last modified.

In response to the RESTful method UPDATE, the M2M
Server may send a Response to the issuer. The M2M Server
may send the Response after updating the <requestInstance>,
as shown. Alternatively, the M2M Server may send the
Response during the update of the <requestlnstance>. The
M2M Server may also send an ACK/NACK message (not
shown) to the issuer for acknowledging receipt of the REST-
ful method UPDATE. No receipt of the ACK/NACK message
by the issuer (e.g., within a certain time) may indicate non-
acknowledgement of the RESTful method UPDATE by the
M2M Server.

US 9,426,222 B2

47

The Response may include an indication (e.g., a code) to
indicate whether the M2M Server successfully updated or
failed to update the <requestlnstance>. The indication may be
one value to indicate of successtul update and another value to
indicate failure. Alternatively, the Response may include a
first indication (e.g., a code) to indicate that the M2M Server
successfully updated the <requestlnstance>, and a second
indication (e.g., a code) to indicate failure to update the
<requestlnstance>. As another alternative, the M2M Server
may only issue the Response if the M2M Server successfully
updated the <requestInstance>.

The Response may also include the <requestlnstance>
identifier and/or the attributes and/or sub-resources updated.
The Response may further include the information that was
used to update the attributes and/or sub-resources or confir-
mation indicative of the same.

FIG. 29P is a message flow diagram illustrating example
message flow for retrieving information from a resource-
command structure, such as the <requestlnstance>. To ini-
tiate retrieval, the NA (i.e., the issuer) issues a RESTful
method RETRIEVE to the M2M Server. The RESTful
method RETRIEVE may include the <requestlnstance>
identifier.

After receipt of the RESTful method RETRIEVE, the
M2M Server may use the <requestlnstance> identifier to
locate the <requestlnstance>. Once located, the M2M Server
may query and obtain retrievable information (e.g., attributes,
parameters and/or arguments) from the attributes and/or sub-
resources of the <requestlnstance> having such retrievable
information (hereinafter “retrieved-attribute information”
and/or “retrieved-sub-resource information”). The retrieved-
attribute and/or retrieved-sub-resource information may
include, for example, any of the stored execDisable, exec-
Pause and execResume identifiers and/or any of the informa-
tion from other attributes and/or sub-resources, such as exec-
Status and execResults.

After obtaining the retrieved-attribute and/or retrieved-
sub-resource information, the M2M Server may send a
Response to the NA. This Response may include the
<requestlnstance> identifier and the retrieved-attribute and/
or retrieved-sub-resource information.

As an alternative, the RESTful method RETRIEVE may be
used to retrieve one or more select portions of the retrievable
information from the attributes and/or sub-resources of the
<requestlnstance> having such retrievable information. To
facilitate this, the RESTful method RETRIEVE may include
an identifier of each node assigned to the attributes and/or
sub-resources of the server <command> having the select
portions of the retrievable information. Using the identifier
(or identifiers, if more than one), the M2M Server may locate,
query and obtain the selected retrieved-attribute and/or
retrieved-sub-resource information. The M2M Server may
then send to the NA a Response that includes the selected
retrieved-attribute and/or retrieved-sub-resource informa-
tion.

Although not shown, the M2M Server may also send an
ACK/NACK message to the issuer for acknowledging receipt
of'the RESTful method RETRIEVE. No receipt of the ACK/
NACK message by the issuer (e.g., within a certain time) may
indicate non-acknowledgement of the RESTful method
RETRIEVE by the M2M Server.

FIG. 29Q is a message flow diagram illustrating example
message flow for deleting a resource-command structure,
such as the <requestInstance>. To initiate the delete, an issuer
may issue a RESTful method DELETE to the M2M Server.
The issuer may be the NA, M2M Device or M2M GW. The
M2M Device and/or the M2M GW may issue the RESTful

5

10

15

20

25

30

35

40

45

50

55

60

65

48

method DELETE in response to a reboot, cancelation of the
non-RESTful command, de-registration, etc.

The RESTful method DELETE may include the <request-
Instance> identifier. Alternatively, the RESTful method
DELETE may include an identifier of a node assigned to a
resource (e.g., the <requestInstances>) under which the col-
lection of <requestlnstance> instances have been created
(hereinafter “<requestInstances> identifier”).

After receipt of the RESTful method DELETE, the M2M
Server may use the <requestInstance> identifier or <request-
Instances> identifier to locate and delete the <requestln-
stance> or <requestlnstances>, respectively. This may
include deleting all attributes and/or sub-resources of the
<requestlnstance> or, for the <requestlnstances>, each
<requestlnstance> of such <requestlnstances>.

In response to the RESTful method DELETE, the M2M
Server may send a Response to the issuer. The M2M Server
may send the Response after deleting the <requestInstance>
or the <requestInstances>, as shown. Alternatively, the M2M
Server may send the Response during deletion of the
<requestlnstance> or the <requestlnstances>. The M2M
Server may also send an ACK/NACK message (not shown) to
the issuer for acknowledging receipt of the RESTful method
DELETE. No receipt of the ACK/NACK message by the
issuer (e.g., within a certain time) may indicate non-acknowl-
edgement of the RESTful method DELETE by the M2M
Server.

The Response may include an indication (e.g., a code) to
indicate whether the M2M Server successfully deleted or
failed to delete the <requestlnstance> or the <requestln-
stances>. The indication may be one value to indicate of
successful deletion and another value to indicate failure.
Alternatively, the Response may include a first indication
(e.g., a code) to indicate that the M2M Server successfully
deleted the <requestInstance> or the <requestInstances™>, and
a second indication (e.g., a code) to indicate failure to delete
the <requestInstance> or the <requestInstances>. As another
alternative, the M2M Server may only issue the Response if
the M2M Server successfully deleted the <requestInstance>
or the <requestlnstances>.

Referring now to FIG. 29R a message flow diagram illus-
trating example message flow for deleting a resource-com-
mand structure, such as the server <command>, server <com-
mands> and/or <requestlnstance>, is shown. The message
flow of FIG. 29R is similar to a combination of the message
flow of FIG. 29C and the message flow of FIG. 291 (or FIG.
29]) or a combination of the message flow of FIG. 29Q and
the message flow of FIG. 291 (or FIG. 29]). As shown, when
an issuer issues a RESTful method DELETE to the M2M
server, the M2M Server determines if any <requestInstance>
is being used for a command execution or a pause-command
execution, then the M2M Server may carry out a cancel-
command execution of such <requestlnstance> prior to delet-
ing it. The M2M Server may carry out the cancel-command
execution in accordance with the message flow of FIG. 291 or
FIG. 29].

In addition to the foregoing, the M2M Server) may create
and/or delete a server <command> or another resource-com-
mands structure without being issued RESTful method CRE-
ATE or a RESTful method DELETE.

Example Gateway-Based Machine-to-Machine
(“M2M”) Device Management

In accordance an embodiment, FIG. 30A illustrates an
example architecture for managing D-type ETSI M2M
Devices via an M2M GW (G') by leveraging OMA GwMO

US 9,426,222 B2

49

“transparent” mode. Referring to FIG. 30A, NREM uses
GwMO-specific interfaces and components to get device
information from GREM, which in turn talks to DREM via
GwMO interfaces in order to perform this task. Then, NREM
may talk to DREM directly using OMA DM protocol—a
client-server interaction model for message exchanging. It is
noted that in “transparent” mode, GREM does not need to
support OMA DM protocol order to manage devices.

In accordance with an embodiment, FIG. 30B illustrates an
example architecture of ETSI M2M xREM. Referring to FIG.
30B, xREM is split into functional sub-modules. For
example, an REM server plays server role in device manage-
ment (like a DM Server in OMA DM or ACS). An REM client
plays a client role in device management (like a DM client in
OMA DM or CPE). An REM proxy component sits only in
GREM talking to a REM proxy server (in a NREM) and a
REM proxy client (ina DREM), respectively. An REM proxy
server sits in a NREM used to talk to a REM Proxy component
to get the information of devices behind a GW. An REM
proxy client sits in a DREM used to make responsestoa REM
proxy component to report device information to the GW,
which eventually is forwarded to a NREM.

In a proxy mode, the M2M GW may act like a “man-in-
the-middle”. It can support both GwWMO and DM client and
DM server as shown in FIG. 31A, which illustrates an
example architecture for leveraging OMA GwMO1.0. In this
mode, NREM does not communicate with DREM directly,
and instead communications are translated and relayed by
GREM. To DREM, GREM looks like a server; to NREM,
GREM behaves like a client. This mode adds more features
and functionalities to the M2M GW. Exemplary benefits
include more value-added services such as command fan-out
and response aggregation, and in turn, lower traffic load in the
M2M core and more efficient for managing constrained M2M
devices especially sleeping nodes. FIG. 31B depicts an
example architecture of xXREM for this mode.

In accordance an embodiment, the M2M devices (D') may
not have ETSI M2M service capabilities. It may be assumed
that they do not have OMA DM client functionalities, but
other non-OMA device management protocols. As a result,
the M2M GW may adopt an “adaptation” mode to translate
between OMA protocol and other management protocols.
FIG. 32A illustrates an example architecture for leveraging
OMA GwMO1.0. FIG. 32B illustrates an example architec-
ture of ETSI M2M xREM. Compared to “proxy” mode, some
non-OMA management protocols, such as SNMP, be utilized
for interactions between the M2M GW and M2M devices
over either dla interface or another NDM-1 interface. It is
noted that the protocol translation refers to not only manage-
ment commands mapping/translating, but also management
tree structure (or resource) mapping/translating, and the like.
If D'-type devices indeed have OMA DM Client functional-
ities, “transparent” and “proxy”” mode can be applied as well.

In accordance with an embodiment, it may be assumed that
the d-type non-ETSI M2M devices may use different man-
agement protocols. As a result, the M2M GW may use an
“adaptation” mode to manage them. The architecture shown
in FIGS. 33A and 33B is similar to that in FIGS. 32A and 32B.
It is noted that d-type device may be non-ETSI M2M GW
such as ZigBee coordinators, through which non-ETSI M2M
area networks can be connected together using and accessing
ETSI M2M service capabilities.

In an embodiment, FIG. 34 illustrates a diagram of GW-
based device management leveraging OMA GwMO. As
shown in FIG. 34, a single M2M GW can connect multiple
M2M area networks with different types of M2M devices.

10

15

20

25

30

35

40

45

50

55

60

65

50

The M2M GW can impose transparent, proxy, or adaptation
management mode for different area networks.

In all of the FIGS. 30-34, extra OMA GwMO and DM
logical entities (such as OMA DM Server) are not necessarily
apart of XREM; but instead, could be separate entities outside
of xREM. The architecture disclosed herein, however, may be
applied as well. For example, FIG. 35 illustrates an example
architecture for partially tight integration of OMA DM and
M2M GW. FIG. 36 illustrates an example architecture for
loose integration of OMA DM and M2M GW.

Example Data Model for Managing M2M Area
Networks and M2M Devices Behind the M2m
Gateway

As described in more detail below, management objects
(MO) for managing machine-to-machine communications
(M2M) area networks and M2M devices behind the M2M
Gateway. M2M area network management may provide the
functionalities, such as device inventory and configuration
management, area network configuration management, area
network performance management, and group management
of devices. This may include applications (A), M2M direct
devices (D), M2M local devices (d-type, D'-type, or D-type
devices), and M2M Gateway (G).

Management objects (MOs) may be defined to manage
M2M area networks by an M2M gateway. One such MO may
be an etsiAreaNwklInfo resource, which may be a manage-
ment object for area network information and configuration.
Another MO may be etsiAreaNwkDevicelnventory resource,
which may be a MO for M2M local device inventory. A
management object for M2M local device groups may be
etsiAreaNwkDeviceGroups resource, for example. A man-
agement object for operating a group of M2M local devices
may be any of an etsiGroupMgmtOperations and an etsiAr-
eaNwkGroupOperations, and a management objects resource
for sensors integrated into a M2M device may be an etsiSen-
SOrs resource.

The MOs may be organized and/or placed at different
subordination levels. For example, the MOs may be a sub-
resource of the same placeholder somewhere under a <scl-
Base-of-Server>/scls/<GSCL>at the M2M server. By way of
example, an mgmtObjs sub-resource under a <sclBase-of-
Server>/scls/<GSCL>/attachedDevices may be created for
managing attached devices behind a M2M gateway as a
whole. The MOs may be placed under a <sclBase-of-Server>/
scls/<GSCL>/attachedDevices/mgmtObjs, for example. An
MO may be a sub-resource of another MO. For example,
etsiSensors may be a sub-source of a <devicelnventory>,
which may be a sub-resource of etsiAreaNwkDevicelnven-
tory.

As shown in FIG. 37, the MO for area network information
and configuration, etsiAreaNwkInfo, may include one or
more attributes and a plurality of sub-resources, such as a
subscriptions collection and a <areaNwklInstance>. The
<areaNwkInstance> may be an instance of M2M area net-
work. The attributes of the etsiAreaNwkInfo may include, for
example, an expirationTime, an accessRightID, a search-
Strings, a creationTime, a lastModifiedTime, a contentType,
a molD, an originalMO, a numOfAreaNwks, and a descrip-
tion. The numOfAreaNwks attribute may be representative of
a number of M2M area networks. The description attribute
may be a text-format description of mgmtObj. The attributes
(and/or variables) may conform to ETSI M2M TS 102 690.
As an alternative, the attributes and/or the subscriptions col-
lection may include, maintain and/or store the expiration-
Time, accessRightID, searchStrings, creationTime, last-

US 9,426,222 B2

51

ModifiedTime, contentType, molD,
numOfAreaNwks, and the description.

As showninFIG. 38 A, a<areaNwklInstance> sub-resource
of an etsiAreaNwkInfo resource may include one or more
attributes and a plurality of sub-resources. The <areaNwkIn-
stance> sub-resource may include (i) an areaNwkID attribute
to house an identity of the M2M area networks, (ii) an areaN-
wkType attribute to specify a type of the M2M area networks,
e.g., a Bluetooth/6LoWPAN, 802.15.4/6LoWPAN, Wi-Fi
network, (iii) a workingChannelFrequency attribute to
specify a working channel frequency of the M2M area net-
work, and (iv) a addressMode attribute to specify a address
mode of'the M2M area network (e.g., [Pv4, IPv6, Short MAC
(medium access control), or Long MAC).

The plurality of sub-resources of the <areaNwkInstance>
sub-resource may include a subscription collection, a <devi-
celnstance> sub-resource, an attachedDevices sub-resource,
a groups sub-resource, a 6LoWPAN sub-resource, a Wi-Fi
sub-resource, a RFID sub-resource, and a ZigBee sub-re-
source.

The <devicelnstance> sub-resource may include informa-
tion for a single device in the area network instance. The
attachedDevices sub-resource may be a placeholder for all
attached devices to the area network, and the groups sub-
resource may be a placeholder for defined device groups for
group operations or operation fan-out. The 6LoWPAN sub-
resource may be placeholder for containing parameters
related to 6LoWPAN networks; as such information may be
used when the area network is a 6LoWPAN network. The
Wi-Fi sub-resource may be a placeholder for containing
parameters related to Wi-Fi networks; as such information
may be used when the area network is a Wi-Fi network. The
RFID sub-resource may be placeholder for containing param-
eters related to RFID networks, as this information may be
needed when the area network is a RFID network, and the
ZigBee sub-resource may be a placeholder for containing
parameters related to ZigBee networks, as such information
may be needed when the area network is a ZigBee network.
Extensions may also be included as a sub-resource and may
provide the placeholder for extensions.

The attributes associated with <areaNwkInstance> sub-
resource may include (i) a numOfDevices, which may repre-
sent the number of devices in the area network instance; (ii) a
sleepinterval, which may represent the interval between two
sleeps, (iii) a sleepDuration, which may represent a time
duration of each sleep; (iv) a MTU, which may represent the
maximum transmission unit in this area network <areaNwk-
Instance> sub-resource; and (v) a blockSize, which may rep-
resent a block size used in a IETF CoAP blockwise transmis-
sion. The blockSize may be helpful when the area network
<areaNwkInstance> sub-resource supports constrained
application protocols (CoAP protocol). The sleeplnterval
attribute may be used as a general time interval, through
which, the M2M server can instruct M2M devices and/or
M2M gateway to send back certain reports or responses peri-
odically, such as every sleeplnterval time unit, for example.

As shown in FIG. 38B, the 6LoWPAN sub-resource may
have a subscriptions sub-resource, subscription and a plural-
ity of attributes related to any of addressing, routing, and
neighbor discovery in 6LoWPAN. The plurality of attributes
may include (i) an ipAddrPrefix attribute for specifying an IP
address prefix of the area network, and (ii) a routingMode
attribute for specifying a routing mode of the M2M area
network. For 6LoWPAN networks, the routingMode attribute
may specify the routing mode to be mesh-under or route-over.

The plurality of attributes may also include (i) minContex-
tChangeDelay attribute for specifying a minimum time for

originalMO,

10

15

20

25

30

35

40

45

50

55

60

65

52

continuing to disseminate header compression context infor-
mation in preparation for a change; (ii) a maxRtrAdvertise-
ments attribute for storing and/or specifying a maximum
number of unsolicited Router Advertisements to be sent, (iii)
a minDelayBetweenRas attribute for specifying a minimum
interval between two consecutive Router Advertisements sent
to all-nodes multicast address, (iv) a maxRaDelayTime
attribute for specifying a maximum delay for sending a
Router Advertisement message as the responses to a received
Router Solicitation message, (v) an entativeNceLifetime
attribute for storing and providing a timer for tentative neigh-
bor cache, (vii) a hopLimit attribute for storing and/or speci-
fying a hop limit value for Duplicate Address Detection mes-
sage, (viii) a rtrSolicitationInterval attribute for storing and/or
specifying an interval for initial retransmission of the first
maxRtrSolications Router Solicitations, (ix) a maxRtrSolici-
tations attribute for storing and/or specifying a number of
initial retransmissions as defined by rtrSolicitationlnterval,
and (x) a maxRtrSolicitationInterval attribute for storing and/
or specifying a maximum retransmission internal for Router
Solicitations since the device may use binary exponential
backoff after the initial retransmission. The hopLimit, rtrSo-
licitationInterval, maxRtrSolicitations and maxRtrSolicita-
tionInterval attributes may be applicable to devices. Other
parameters may be applicable to both devices and M2M
gateway.

As shown in FIG. 38C, a <areaNwklInstance> sub-resource
of an etsiAreaNwklInfo resource may include one or more
attributes and a subscriptions sub-resource. The <areaNwk-
Instance> sub-resource may include (i) an areaNwkID
attribute to house an identity of the M2M area networks, (ii)
an areaNwk Type attribute to specity a type of the M2M area
networks, e.g., a Bluetooth/6LoWPAN, 802.15.4/6L.oW-
PAN, Wi-Fi network, (iii)) a workingChannelFrequency
attribute to specify a working channel frequency of the M2M
area network, and (iv) a addressMode attribute to specify a
address mode of the M2M area network (e.g., IPv4, IPv6,
Short MAC (medium access control), or Long MAC), (v) a
6LoWPAN attribute, a Wi-Fi attribute, a RFID attribute, a
ZigBee attribute.

The 6LoWPAN attribute may be placeholder for contain-
ing parameters related to 6LoWPAN networks, e.g., informa-
tion that may be used when the area network is a 6LoWPAN
network. The Wi-Fi attribute may be a placeholder for con-
taining parameters related to Wi-Fi networks, e.g., informa-
tion that may be used when the area network is a Wi-Fi
network. The RFID attribute may be placeholder for contain-
ing parameters related to RFID networks, and the ZigBee
attribute may be a placeholder for containing parameters
related to ZigBee networks.

Inaddition the <areaNwkInstance> sub-resource may have
more attributes related to a specific type of area network. For
example, if M2M area network is a 6LoWPAN network, the
<areaNwkInstance> sub-resource may include a number of
attributes related to addressing, routing, and/or neighbor dis-
covery in 6LoWPAN. The plurality of attributes may include
(1) an ipAddrPrefix attribute, and (ii) a routingMode attribute;
(iii) a minContextChangeDelay attribute; (iv) a maxRtrAd-
vertisements attribute; (vi) a minDelayBetweenRas attribute,
(vii) amaxRaDelayTime attribute, (viii) an tentativeNceLife-
time attribute, (ix) a hopLimit attribute, (x) a rtrSolicitation-
Interval attribute, (xi) a maxRtrSolicitations attribute for stor-
ing and/or specifying a number of initial retransmissions as
defined by rtrSolicitationInterval, and (xii) a maxRtrSolicita-
tionInterval attribute. The hopLimit, rtrSolicitationInterval,
maxRtrSolicitations and maxRtrSolicitationInterval

US 9,426,222 B2

53

attributes may be applicable to devices. Other parameters
may be applicable to both devices and M2M gateway.

As shown in FIG. 39, an etsiAreaNwkDevicelnventory
MO may have sub-resources, including (i) a <deviceln-
stance> sub-resource, which may include a collection of indi-
vidual <devicelnstance> information for each active device
attached with a M2M gateway; (ii) a <areaNwklInstance>
sub-resource, which may identify each area network; (iii) a
groups sub-resource, which may provide a placeholder for
defined device groups, and (iv) a subscriptions collection
sub-resource. The subscriptions collection sub-resource may
include attributes, such as expirationTime, accessRightID,
searchStrings, creationTime, lastModifiedTime, content-
Type, which may be included in FSS format, molD, origi-
nalMO, a description (e.g., a text-format description of mgm-
tObj), and the number of devices attached with the M2M
gateway numOfDevices.

The M2M area network under the same M2M gateway may
correspond to a single etsiAreaNwkDevicelnventory sub-re-
source, or each area network may have its own etsiAreaN-
wkDevicelnventory sub-resource. The etsiAreaNwkDevice-
Inventory sub-resource may be subordinate to the
etsiAreaNwklInfo sub-resource. As an alternative, the etsiAr-
eaNwkDevicelnventory MO might not include the <areaN-
wklInstance> sub-resource and/or the groups sub-resource.

As shown in FIG. 40A, each <devicelnstance> may
include a list of identities of groups that the device belongs to,
such as a deviceGroupsList, the group of application identi-
ties of all applications, such as D'A or DA, for example, on
this device deviceApplicationsList, the list of identities of
neighbor nodes deviceNeighborsList, battery info etsiBat-
tery, memory information etsiMemory, and sensor/actuator
information etsiSensor, 6LoWPAN, which may provide the
placeholder for containing parameters related to 6LoWPAN
networks, Wi-Fi, which may provide the placeholder for con-
taining parameters related to Wi-Fi networks, RFID, which
may provide the placeholder for containing parameters
related to RFID networks, ZigBee, which may provide the
placeholder for containing parameters related to ZigBee net-
works, and extensions, which may be the placeholder for
extensions.

This group may provide the standard group resource, such
as, for example, set forth in the ETSITS 102 609. The <devi-
celnstance> may include attributes, such as deviceType,
which may be the type of device; devicelD, which may be the
device identifier; addressType, which may be the address type
of'the device; areaNwkID, which may include the identity of
the M2M area network which the device belongs to; internal
address, which may be the internal IP address of the device
used insider the M2M area network; and external address,
which may be the external IP address of the device used
outside of the M2M area network. This address may contain
port information if port number is used in address translation
at M2M gateway. Further, the interval between two sleeps
sleepinterval, the time duration of each sleep sleepDuration,
the status of the device status, such as sleeping or awake,
MTU, which may include the maximum transmission unit in
the area network, and blockSize, which may include the block
size used in the IETF CoAP blockwise transmission.

As shown in FIG. 40B, each <devicelnstance>may include
a list of identities of groups that the device belongs to such as
deviceGroupL.ist, the group of application identities of all
applications, such as D'A or DA, for example, on this device
deviceApplicationList, the list of identities of neighbor nodes
deviceNeighborList, battery info etsiBattery, memory infor-
mation etsiMemory, and sensor/actuator information etsiSen-
sor. The subscription collection may include attributes such

10

15

20

25

30

35

40

45

50

55

60

65

54

as deviceType, which may be the type of device; devicelD,
which may be the device identifier; addressType, which may
be the address type of the device; areaNwkID, which may
include the identity of the M2M area network which the
device belongs to; internal address, which may be the internal
IP address of the device used insider the M2M area network;
and external address, which may be the external IP address of
the device used outside of the M2M area network. This
address may contain port information if port number is used
in address translation at M2M gateway. Further, the interval
between two sleeps sleepinterval, the time duration of each
sleep sleepDuration, the status of the device status, such as
sleeping or awake, the maximum number of unsolicited
Router Advertisements to be sent maxRtrAdvertisements, the
minimum interval between two consecutive Router Adver-
tisements sent to all-nodes multicast address minDelayBe-
tweenRas, the maximum delay for sending a Router Adver-
tisement message as the responses to a received Router
Solicitation message maxRaDelayTime, the timer for tenta-
tive neighbor cache tentativeNceLifetime, the hop limit value
for Duplicate Address Detection message hopLimit, the inter-
val for initial retransmission of the first maxRtrSolications
Router Solicitations rtrSolicitationInterval, the number of
initial retransmissions maxRtrSolicitations, and the maxi-
mum retransmission internal for Router Solicitations since
the device may use binary exponential backoff after the initial
retransmission maxRtrSolicitationInterval.

As shown in FIG. 41 A, an etsiAreaNwkDeviceGroups MO
may include sub-resources such as <deviceGrouplnstance>
defining a group of devices and subscriptions. The subscrip-
tion collection and attributes may include expirationTime,
accessRightID, searchStrings, creationTime, lastModified-
Time, contentType, which may be formatted as FFS, molD,
originalMO, and a description including the text-format
description of mgmtObj.

As shown in FIG. 41B, an etsiAreaNwkDeviceGroups MO
may include sub-resources subscriptions and groups defining
as a collection of multiple groups of devices. An etsiAreaN-
wkDeviceGroups may include attributes such as expiration-
Time, accessRightID, searchStrings, creationTime, last-
ModifiedTime, contentType, which may be formatted as FFS,
molD, originalMO, and a description including the text-for-
mat description of mgmtObj.

Each sub-resource <group>may contain a list of identities
of devices, which belong to the same group. In addition, a
device may belong to and exist in multiple <group> instances.

As shown in FIG. 42, each <deviceGrouplnstance> may
include sub-resources such as subscriptions, with subscrip-
tion collection and attributes including expirationTime,
accessRightID, searchStrings, creationTime, lastModified-
Time, contentType, which may be in FFS format, molD,
originalMO, and a description including the text-format
description of mgmtObj. Further, groupID may include the
group identity, group Type, which may include the group type,
groupSize such as the number of devices in the group, mem-
bers defined as the collection of devices in the group, and the
condition, which specifies the condition for devices to be a
member of this group.

As shown in FIG. 43A, etsiGroupMgmtOperations MO
may include sub-resources such as <operationlnstance>,
which may stand for an operation or action to be executed on
a group, and groups, which may include the placeholder for
defined device groups with each device group including a list
of devices and may be operated by one or multiple <opera-
tionInstance>. The subscription collection and attributes may
include expirationTime, accessRightID, searchStrings, cre-

US 9,426,222 B2

55

ationTime, lastModifiedTime, contentType, molD, origi-
nalMO, and description including the text-format description
of mgmtOb;j.

In addition to being used to manage/operate a group of
M2M devices behind a M2M gateway, etsiGroupMgmtOp-
erations may be used to manage the operation of a group of
M2M devices directly connecting to a M2M server. In this
case, etsiGroupMgmtOperations may be placed under <scl-
Base-of-Server>/scls/mgmtObj s/etsiGroupMgmtOpera-
tions. The corresponding <operationlnstance> may include
de-registering a group of M2M devices or gateways, sending
a group of M2M devices or gateways to sleep mode, reboot-
ing a group of M2M devices or gateways, and performing the
same software/firmware update on a group of M2M devices
or gateways.

Also, etsiGroupMgmtOperations may be used to manage a
group of applications on a M2M Device or a M2M Gateway.
In this case, etsiGroupMgmtOperations may be placed under
<sclBase-of-Server>/scls/<scl>/applications/mgmtObj
s/etsiGroupMgmtOperations. The corresponding <opera-
tionlnstance> may include de-registering a group of M2M
applications, and performing the same software/firmware
update on a group of M2M applications.

As shown in FIG. 43B, an etsiAreaNwkDeviceGroupOp-
erations MO may include sub-resources, such as <operation-
Instance>, which may stand for an operation or action to be
executed on a group. The subscription collection and
attributes may include expirationTime, accessRightID,
searchStrings, creationTime, lastModifiedTime, content-
Type, molD, originalMO, and description including the text-
format description of mgmtObj.

As shown in FIG. 44A, each <operationlnstance> may
include a sub-resource such as subscriptions with subscrip-
tion collection and attributes including expirationTime,
accessRightID, searchStrings, creationTime, lastModified-
Time, contentType, which may be in FSS format, molD,
originalMO, and description including the text-format
description of mgmtObj. <operationInstance>may include as
a sub-resource groups, which may include deviceGroupsList,
which may be a list of identities of groups that <operationln-
stance> may be executed on, execResults, which may be the
collection of results of <operationlnstance>, and may have
further sub-resources including <resultlnstance> and sub-
scription and an attribute aggregatedResult.

<resultlnstance> may represent the result from a single
device and may have sub-resource subscriptions and
attributes including devicelD, which may be the device iden-
tity, resultValue, which may be the result from the device
devicelD, execStatus, which may be the status of <operation-
Instance> on the device devicelD, execEnable, which may be
to start the <operationlnstance> on devicelD, execPause,
which may be to pause the <operationlnstance> on devicelD,
execResume, which may be to resume the <operationln-
stance> on devicelD, execDisable, which may be to stop the
<operationlnstance> on devicelD, aggregatedResult, which
may be the aggregated result, execParameters, which may
contain the arguments required by <operationlnstance> and
may be operation-specific.

Further, operationlD, which may be the identification of
<operationlnstance> and may specify what <operationln-
stance> stands for. groupID may provide the identity of the
group which the <operationlnstance> may be executed on,
and groupID may contain multiple identifications if <opera-
tionlnstance> can be executed on multiple defined device
groups. Alternatively, those multiple group identifications
may be contained in deviceGroupsList resource. execEnable
may start the <operationlnstance> on devices in the grouplD.

5

10

15

20

25

30

35

40

45

50

55

60

65

56

execPause may pause the <operationlnstance> on devices in
the grouplD, execResume may resume the <operationln-
stance> on devices in the groupID, execDisable may stop the
<operationlnstance> on devices in the groupID, execStatus
may provide the status of the <operationlnstance>. The status
may include pending, running, stopped, paused, resumed, the
number of devices successfully executed, finished & success-
fully on devices, and/or the number of devices that fail to be
executed on.

As shown in FIG. 44, each <operationlnstance> may
include a sub-resource such as subscriptions with subscrip-
tion collection and attributes including expirationTime,
accessRightID, searchStrings, creationTime, lastModified-
Time, contentType, which may be in FSS format, molD,
originalMO, and description including the text-format
description of mgmtObj. Further, groupID may provide the
identity of the group which the <operation> may be executed
on, enable may be provided to start the <operation>, disable
to stop the <operation>, results may include the collection of
results of <operation>, and aggregatedResult may include the
aggregated result. Each <resultlnstance> may have two
attributes such as devicelD and resultValue, which may indi-
cate the device identity and result, and which may be the
result from the device, devicelD.

As shown in FIG. 45, an etsiSensors MO may include
sub-resource such as <sensorlnstance> for a sensor instance
and subscriptions including subscription collection and
attributes, such as expirationTime, accessRightID, search-
Strings, creationTime, lastModifiedTime, contentType,
which may be in FFS format, moID, originalMO, and
description, which may include the text-format description of
mgmtObj. etsiSensors may be applicable to a D-type M2M
device which has M2M service capabilities.

As shown in FIG. 46, <sensorlnstance> may include sub-
resources such as groups with related groups. For example,
one group may be applicationList to stand for D'A or DA
applications on this device, which uses the <sensorlnstance>.
Containers may store sensor readings. Subscription collec-
tion and attributes may include expirationTime, access-
RightID, searchStrings, creationTime, lastModifiedTime,
contentType, which may be in FFS format, molD, origi-
nalMO, and description that may include the text-format
description of mgmtObj. sensorID may describe the identity
of <sensorlnstance>. sensorType may describe the type of
<sensorlnstance> such as temperature, pressure, manufac-
turer defining the manufacturer of <sensorlnstance>, and
operations, which may include the operations which are oper-
able on <sensorlnstance>. Enable may include enabling the
sensor reading. If it is a switch sensor, enable may mean
switch-on. Enable may have a result as its attribute to store the
operation result. Disable may include disabling the sensor
reading. If it is a switch sensor, disable may mean switch-off.
Disable may have a result as its attribute to store the operation
result. Other operations may be possible for a particular sen-
SOf.

Example Operating Environments

FIG. 47 is a block diagram of example architecture of a
system 4700 for performing REM in accordance with a man-
agement object used by DA and/or GA to manage another
D/G that registers with an M2M Server (it is <scl> here).

The M2M Server (i.e., <scl>) may announce its manage-
ment object to the D/G, as shown at 4702. Then DA/GA can
access such announced management object in D/G, and in
turn, be able to manage the other D/G via messaging relaying
at the M2M Server.

US 9,426,222 B2

57

FIG. 38A is a diagram of an example communications
system 100 in which one or more disclosed embodiments
may be implemented. The communications system 100 may
be a multiple access system that provides content, such as
voice, data, video, messaging, broadcast, etc., to multiple
wireless users. The communications system 100 may enable
multiple wireless users to access such content through the
sharing of system resources, including wireless bandwidth.
For example, the communications systems 100 may employ
one or more channel access methods, such as code division
multiple access (CDMA), time division multiple access
(TDMA), frequency division multiple access (FDMA),
orthogonal FDMA (OFDMA), single-carrier FDMA (SC-
FDMA), and the like.

As shown in FIG. 48A, the communications system 100
may include wireless transmit/receive units (WTRUs) 102a,
1025, 102¢, 1024, a radio access network (RAN) 104, a core
network 106, a public switched telephone network (PSTN)
108, the Internet 110, and other networks 112, though it will
be appreciated that the disclosed embodiments contemplate
any number of WITRUs, base stations, networks, and/or net-
work elements. Each of the WTRUs 1024, 1025, 102¢, 1024
may be any type of device configured to operate and/or com-
municate in a wireless environment. By way of example, the
WTRUs 102a, 1025, 102¢, 1024 may be configured to trans-
mit and/or receive wireless signals and may include user
equipment (UE), a mobile station, a fixed or mobile sub-
scriber unit, a pager, a cellular telephone, a personal digital
assistant (PDA), a smartphone, a laptop, a netbook, a personal
computer, a wireless sensor, consumer electronics, and the
like.

The communications systems 100 may also include a base
station 114a and a base station 1145. Each of the base stations
114a, 1145 may be any type of device configured to wire-
lessly interface with at least one of the WIRUs 102a, 1025,
102c¢, 1024 to facilitate access to one or more communication
networks, such as the core network 106, the Internet 110,
and/or the networks 112. By way of example, the base sta-
tions 114a, 1145 may be a base transceiver station (BTS), a
Node-B, an eNode B, a Home Node B, a Home eNode B, a
site controller, an access point (AP), a wireless router, and the
like. While the base stations 114a, 1145 are each depicted as
a single element, it will be appreciated that the base stations
114a, 1145 may include any number of interconnected base
stations and/or network elements.

The base station 114a may be part of the RAN 104, which
may also include other base stations and/or network elements
(not shown), such as a base station controller (BSC), a radio
network controller (RNC), relay nodes, etc. The base station
114a and/or the base station 1145 may be configured to trans-
mit and/or receive wireless signals within a particular geo-
graphic region, which may be referred to as a cell (not shown).
The cell may further be divided into cell sectors. For example,
the cell associated with the base station 114a may be divided
into three sectors. Thus, in one embodiment, the base station
114a may include three transceivers, i.e., one for each sector
of'the cell. In another embodiment, the base station 114a may
employ multiple-input multiple output (MIMO) technology
and, therefore, may utilize multiple transceivers for each sec-
tor of the cell.

The base stations 114a, 1145 may communicate with one
or more of the WTRUs 1024, 1025, 102¢, 1024 over an air
interface 116, which may be any suitable wireless communi-
cation link (e.g., radio frequency (RF), microwave, infrared
(IR), ultraviolet (UV), visible light, etc.). The air interface
116 may be established using any suitable radio access tech-
nology (RAT).

10

15

20

25

30

35

40

45

50

55

60

65

58

More specifically, as noted above, the communications
system 100 may be a multiple access system and may employ
one or more channel access schemes, such as CDMA,
TDMA, FDMA, OFDMA, SC-FDMA, and the like. For
example, the base station 114a in the RAN 104 and the
WTRUs 1024, 1025, 102¢ may implement a radio technology
such as Universal Mobile Telecommunications System
(UMTS) Terrestrial Radio Access (UTRA), which may estab-
lish the air interface 116 using wideband CDMA (WCDMA).
WCDMA may include communication protocols such as
High-Speed Packet Access (HSPA) and/or Evolved HSPA
(HSPA+). HSPA may include High-Speed Downlink Packet
Access (HSDPA) and/or High-Speed Uplink Packet Access
(HSUPA).

In another embodiment, the base station 114a and the
WTRUs 1024, 1025, 102¢ may implement a radio technology
such as Evolved UMTS Terrestrial Radio Access (E-UTRA),
which may establish the air interface 116 using Long Term
Evolution (LTE) and/or LTE-Advanced (LTE-A).

In other embodiments, the base station 114a and the
WTRUs 1024, 1025, 102¢ may implement radio technologies
such as IEEE 802.16 (i.e., Worldwide Interoperability for
Microwave Access (WiMAX)), CDMA2000, CDMA2000
1x, CDMA2000 EV-DO, Interim Standard 2000 (IS-2000),
Interim Standard 95 (IS-95), Interim Standard 856 (IS-856),
Global System for Mobile communications (GSM),
Enhanced Data rates for GSM Evolution (EDGE), GSM
EDGE (GERAN), and the like.

Thebase station 1145 in F1IG. 48 A may be a wireless router,
Home Node B, Home eNode B, or access point, for example,
and may utilize any suitable RAT for facilitating wireless
connectivity in a localized area, such as a place of business, a
home, a vehicle, a campus, and the like. In one embodiment,
the base station 1145 and the WTRUs 102¢, 1024 may imple-
ment a radio technology such as IEEE 802.11 to establish a
wireless local area network (WLAN). In another embodi-
ment, the base station 1145 and the WTRUs 102¢, 1024 may
implement a radio technology such as IEEE 802.15 to estab-
lish a wireless personal area network (WPAN). In yet another
embodiment, the base station 1145 and the WTRUs 102¢,
102d may utilize a cellular-based RAT (e.g., WCDMA,
CDMA2000, GSM, LTE, LTE-A, etc.) to establish a picocell
or femtocell. As shown in FIG. 48A, the base station 1145
may have a direct connection to the Internet 110. Thus, the
base station 1145 may not be required to access the Internet
110 via the core network 106.

The RAN 104 may be in communication with the core
network 106, which may be any type of network configured to
provide voice, data, applications, and/or voice over internet
protocol (VoIP) services to one or more of the WTRUs 102a,
1024, 102¢, 102d. For example, the core network 106 may
provide call control, billing services, mobile location-based
services, pre-paid calling, Internet connectivity, video distri-
bution, etc., and/or perform high-level security functions,
such as user authentication. Although not shown in FIG. 48 A,
it will be appreciated that the RAN 104 and/or the core net-
work 106 may be in direct or indirect communication with
other RANs that employ the same RAT as the RAN 104 or a
different RAT. For example, in addition to being connected to
the RAN 104, which may be utilizing an E-UTRA radio
technology, the core network 106 may also be in communi-
cation with another RAN (not shown) employing a GSM
radio technology.

The core network 106 may also serve as a gateway for the
WTRUs 1024, 1025, 102¢, 102d to access the PSTN 108, the
Internet 110, and/or other networks 112. The PSTN 108 may
include circuit-switched telephone networks that provide

US 9,426,222 B2

59

plain old telephone service (POTS). The Internet 110 may
include a global system of interconnected computer networks
and devices that use common communication protocols, such
as the transmission control protocol (TCP), user datagram
protocol (UDP) and the internet protocol (IP) in the TCP/IP
internet protocol suite. The networks 112 may include wired
or wireless communications networks owned and/or operated
by other service providers. For example, the networks 112
may include another core network connected to one or more
RANSs, which may employ the same RAT as the RAN 104 or
a different RAT.

Some or all of the WTRUs 102a, 1025, 102¢, 1024 in the
communications system 100 may include multi-mode capa-
bilities, i.e., the WTRUs 1024, 1025, 102¢, 1024 may include
multiple transceivers for communicating with different wire-
less networks over different wireless links. For example, the
WTRU 102¢ shown in FIG. 48 A may be configured to com-
municate with the base station 114a, which may employ a
cellular-based radio technology, and with the base station
1145, which may employ an IEEE 802 radio technology.

FIG. 48B is a system diagram of an example WTRU 102.
As shown in FIG. 48B, the WTRU 102 may include a pro-
cessor 118, a transceiver 120, a transmit/receive element 122,
a speaker/microphone 124, a keypad 126, a display/touchpad
128, non-removable memory 130, removable memory 132, a
power source 134, a global positioning system (GPS) chipset
136, and other peripherals 138. It will be appreciated that the
WTRU 102 may include any sub-combination of the forego-
ing elements while remaining consistent with an embodi-
ment.

The processor 118 may be a general purpose processor, a
special purpose processor, a conventional processor, a digital
signal processor (DSP), a plurality of microprocessors, one or
more microprocessors in association with a DSP core, a con-
troller, a microcontroller, Application Specific Integrated Cir-
cuits (ASICs), Field Programmable Gate Array (FPGAs) cir-
cuits, any other type of integrated circuit (IC), a state
machine, and the like. The processor 118 may perform signal
coding, data processing, power control, input/output process-
ing, and/or any other functionality that enables the WTRU
102 to operate in a wireless environment. The processor 118
may be coupled to the transceiver 120, which may be coupled
to the transmit/receive element 122. While FIG. 48B depicts
the processor 118 and the transceiver 120 as separate compo-
nents, it will be appreciated that the processor 118 and the
transceiver 120 may be integrated together in an electronic
package or chip.

The transmit/receive element 122 may be configured to
transmit signals to, or receive signals from, a base station
(e.g., the base station 114a) over the air interface 116. For
example, in one embodiment, the transmit/receive element
122 may be an antenna configured to transmit and/or receive
RF signals. In another embodiment, the transmit/receive ele-
ment 122 may be an emitter/detector configured to transmit
and/or receive IR, UV, or visible light signals, for example. In
yet another embodiment, the transmit/receive element 122
may be configured to transmit and receive both RF and light
signals. It will be appreciated that the transmit/receive ele-
ment 122 may be configured to transmit and/or receive any
combination of wireless signals.

In addition, although the transmit/receive element 122 is
depicted in FIG. 48B as a single element, the WTRU 102 may
include any number of transmit/receive elements 122. More
specifically, the WIRU 102 may employ MIMO technology.
Thus, in one embodiment, the WTRU 102 may include two or

10

15

20

25

30

35

40

45

50

55

60

65

60

more transmit/receive elements 122 (e.g., multiple antennas)
for transmitting and receiving wireless signals over the air
interface 116.

The transceiver 120 may be configured to modulate the
signals that are to be transmitted by the transmit/receive ele-
ment 122 and to demodulate the signals that are received by
the transmit/receive element 122. As noted above, the WTRU
102 may have multi-mode capabilities. Thus, the transceiver
120 may include multiple transceivers for enabling the
WTRU 102 to communicate via multiple RATs, such as
UTRA and IEEE 802.11, for example.

The processor 118 of the WTRU 102 may be coupled to,
and may receive user input data from, the speaker/micro-
phone 124, the keypad 126, and/or the display/touchpad 128
(e.g., a liquid crystal display (LCD) display unit or organic
light-emitting diode (OLED) display unit). The processor 118
may also output user data to the speaker/microphone 124, the
keypad 126, and/or the display/touchpad 128. In addition, the
processor 118 may access information from, and store data in,
any type of suitable memory, such as the non-removable
memory 130 and/or the removable memory 132. The non-
removable memory 130 may include random-access memory
(RAM), read-only memory (ROM), a hard disk, or any other
type of memory storage device. The removable memory 132
may include a subscriber identity module (SIM) card, a
memory stick, a secure digital (SD) memory card, and the
like. In other embodiments, the processor 118 may access
information from, and store data in, memory that is not physi-
cally located on the WTRU 102, such as on a server or ahome
computer (not shown).

The processor 118 may receive power from the power
source 134, and may be configured to distribute and/or con-
trol the power to the other components in the WTRU 102. The
power source 134 may be any suitable device for powering
the WTRU 102. For example, the power source 134 may
include one or more dry cell batteries (e.g., nickel-cadmium
(NiCd), nickel-zinc (NiZn), nickel metal hydride (NiMH),
lithium-ion (Li-ion), etc.), solar cells, fuel cells, and the like.

The processor 118 may also be coupled to the GPS chipset
136, which may be configured to provide location informa-
tion (e.g., longitude and latitude) regarding the current loca-
tion of the WTRU 102. In addition to, or in lieu of, the
information from the GPS chipset 136, the WTRU 102 may
receive location information over the air interface 116 from a
base station (e.g., base stations 114a, 1145) and/or determine
its location based on the timing of the signals being received
from two or more nearby base stations. It will be appreciated
that the WTRU 102 may acquire location information by way
of any suitable location-determination method while remain-
ing consistent with an embodiment.

The processor 118 may further be coupled to other periph-
erals 138, which may include one or more software and/or
hardware modules that provide additional features, function-
ality and/or wired or wireless connectivity. For example, the
peripherals 138 may include an accelerometer, an e-compass,
a satellite transceiver, a digital camera (for photographs or
video), a universal serial bus (USB) port, a vibration device,
a television transceiver, a hands free headset, a Bluetooth®
module, a frequency modulated (FM) radio unit, a digital
music player, a media player, a video game player module, an
Internet browser, and the like.

FIG. 48C is a system diagram of the RAN 104 and the core
network 106 according to an embodiment. As noted above,
the RAN 104 may employ a UTRA radio technology to
communicate with the WTRUs 1024, 1025, 102¢ over the air
interface 116. The RAN 104 may also be in communication
with the core network 106. As shown in FIG. 48C, the RAN

US 9,426,222 B2

61

104 may include Node-Bs 1404, 1405, 140¢, which may each
include one or more transceivers for communicating with the
WTRUs 102a, 1025, 102¢ over the air interface 116. The
Node-Bs 140a, 1405, 140c may each be associated with a
particular cell (not shown) within the RAN 104. The RAN
104 may also include RNCs 1424a, 1425. It will be appreciated
that the RAN 104 may include any number of Node-Bs and
RNCs while remaining consistent with an embodiment.

As shown in FIG. 48C, the Node-Bs 140a, 1405 may be in
communication with the RNC 142a. Additionally, the
Node-B 140¢ may be in communication with the RNC 14254.
The Node-Bs 140a, 1405, 140¢ may communicate with the
respective RNCs 1424, 1425 via an lub interface. The RNCs
142a, 1425 may be in communication with one another via an
Tur interface. Each of the RNCs 1424, 1425 may be config-
ured to control the respective Node-Bs 140a, 14056, 140c¢ to
which it is connected. In addition, each of the RNCs 142a,
142b may be configured to carry out or support other func-
tionality, such as outer loop power control, load control,
admission control, packet scheduling, handover control, mac-
rodiversity, security functions, data encryption, and the like.

The core network 106 shown in FIG. 48C may include a
media gateway (MGW) 144, a mobile switching center
(MSC) 146, a serving GPRS support node (SGSN) 148, and/
or a gateway GPRS support node (GGSN) 150. While each of
the foregoing elements are depicted as part of the core net-
work 106, it will be appreciated that any one of these elements
may be owned and/or operated by an entity other than the core
network operator.

The RNC 142¢ in the RAN 104 may be connected to the
MSC 146 in the core network 106 via an IuCS interface. The
MSC 146 may be connected to the MGW 144. The MSC 146
and the MGW 144 may provide the WTRUs 1024,1025,102¢
with access to circuit-switched networks, such as the PSTN
108, to facilitate communications between the WTRUs 1024,
10256, 102¢ and traditional land-line communications
devices.

The RNC 1424 in the RAN 104 may also be connected to
the SGSN 148 in the core network 106 via an [uPS interface.
The SGSN 148 may be connected to the GGSN 150. The
SGSN 148 and the GGSN 150 may provide the WTRUs 1024,
1024, 102¢ with access to packet-switched networks, such as
the Internet 110, to facilitate communications between and
the WIRUs 1024, 1025, 102¢ and IP-enabled devices.

As noted above, the core network 106 may also be con-
nected to the networks 112, which may include other wired or
wireless networks that are owned and/or operated by other
service providers.

FIG. 48D is a system diagram of the RAN 104 and the core
network 106 according to an embodiment. As noted above,
the RAN 104 may employ an E-UTRA radio technology to
communicate with the WTRUs 1024, 1025, 102¢ over the air
interface 116. The RAN 104 may also be in communication
with the core network 106.

The RAN 104 may include eNode-Bs 140a, 14056, 140c,
though it will be appreciated that the RAN 104 may include
any number of eNode-Bs while remaining consistent with an
embodiment. The eNode-Bs 140a, 1405, 140c may each
include one or more transceivers for communicating with the
WTRUs 1024, 1025, 102¢ over the air interface 116. In one
embodiment, the eNode-Bs 140a, 1405, 140¢ may implement
MIMO technology. Thus, the eNode-B 140q, for example,
may use multiple antennas to transmit wireless signals to, and
receive wireless signals from, the WTRU 102a.

Each of the eNode-Bs 1404, 1405, 140c may be associated
with a particular cell (not shown) and may be configured to
handle radio resource management decisions, handover deci-

20

30

40

45

62
sions, scheduling of users in the uplink and/or downlink, and
the like. As shown in FIG. 48D, the eNode-Bs 140a, 1405,
140¢ may communicate with one another over an X2 inter-
face.

The core network 106 shown in FIG. 48D may include a
mobility management gateway (MME) 142, a serving gate-
way 144, and a packet data network (PDN) gateway 146.
While each of the foregoing elements are depicted as part of
the core network 106, it will be appreciated that any one of
these elements may be owned and/or operated by an entity
other than the core network operator.

The MME 142 may be connected to each of the eNode-Bs
140a, 1405, 140c in the RAN 104 via an S1 interface and may
serve as a control node. For example, the MME 142 may be
responsible for authenticating users of the WTRUs 102a,
1024, 102¢, bearer activation/deactivation, selecting a par-
ticular serving gateway during an initial attach of the WTRUs
102a, 1025, 102¢, and the like. The MME 142 may also
provide a control plane function for switching between the
RAN 104 and other RANs (not shown) that employ other
radio technologies, such as GSM or WCDMA.

The serving gateway 144 may be connected to each of the
eNode Bs 140a, 1405, 140c¢ in the RAN 104 via the S1
interface. The serving gateway 144 may generally route and
forward user data packets to/from the WTRUs 1024, 1025,
102¢. The serving gateway 144 may also perform other func-
tions, such as anchoring user planes during inter-eNode B
handovers, triggering paging when downlink data is available
for the WTRUs 102a, 1025, 102¢, managing and storing
contexts of the WTRUs 1024, 1025, 102¢, and the like.

The serving gateway 144 may also be connected to the
PDN gateway 146, which may provide the WTRUs 102a,
1024, 102¢ with access to packet-switched networks, such as
the Internet 110, to facilitate communications between the
WTRUs 1024, 1025, 102¢ and IP-enabled devices.

The core network 106 may facilitate communications with
other networks. For example, the core network 106 may pro-
vide the WIRUs 102a, 1025, 102¢ with access to circuit-
switched networks, such as the PSTN 108, to facilitate com-
munications between the WTRUs 102a, 10254, 102¢ and
traditional land-line communications devices. For example,
the core network 106 may include, or may communicate with,
an [P gateway (e.g., an IP multimedia subsystem (IMS)
server) that serves as an interface between the core network
106 and the PSTN 108. In addition, the core network 106 may
provide the WTRUs 102a, 1025, 102¢ with access to the
networks 112, which may include other wired or wireless
networks that are owned and/or operated by other service
providers.

FIG. 48E is a system diagram of the RAN 104 and the core
network 106 according to an embodiment. The RAN 104 may
be an access service network (ASN) that employs IEEE
802.16 radio technology to communicate with the WTRUs
102a,1025,102¢ over the air interface 116. As will be further
discussed below, the communication links between the dif-
ferent functional entities of the WTRUs 102a, 1025,102¢, the
RAN 104, and the core network 106 may be defined as ref-
erence points.

As shown in FIG. 48E, the RAN 104 may include base
stations 140a, 1405, 140¢, and an ASN gateway 142, though
it will be appreciated that the RAN 104 may include any
number of base stations and ASN gateways while remaining
consistent with an embodiment. The base stations 140a,
1405, 140¢ may each be associated with a particular cell (not
shown) in the RAN 104 and may each include one or more
transceivers for communicating with the WTRUs 1024, 1025,
102¢ over the air interface 116. In one embodiment, the base

US 9,426,222 B2

63

stations 140a, 1405, 140c may implement MIMO technol-
ogy. Thus, the base station 140q, for example, may use mul-
tiple antennas to transmit wireless signals to, and receive
wireless signals from, the WTRU 102a. The base stations
140a, 1405, 140c may also provide mobility management
functions, such as handoff triggering, tunnel establishment,
radio resource management, traffic classification, quality of
service (QoS) policy enforcement, and the like. The ASN
gateway 142 may serve as a traffic aggregation point and may
be responsible for paging, caching of subscriber profiles,
routing to the core network 106, and the like.

The air interface 116 between the WTRUs 1024, 1025,
102¢ and the RAN 104 may be defined as an R1 reference
point that implements the IEEE 802.16 specification. In addi-
tion, each of the WTRUs 102a, 1025, 102¢ may establish a
logical interface (not shown) with the core network 106. The
logical interface between the WTRUs 102a, 1025, 102¢ and
the core network 106 may be defined as an R2 reference point,
which may be used for authentication, authorization, IP host
configuration management, and/or mobility management.

The communication link between each of the base stations
140a,1405,140c may be defined as an R8 reference point that
includes protocols for facilitating WTRU handovers and the
transfer of data between base stations. The communication
link between the base stations 140a, 1405, 140¢ and the ASN
gateway 142 may be defined as an R6 reference point. The R6
reference point may include protocols for facilitating mobil-
ity management based on mobility events associated with
each of the WTRUs 1024, 1025, 100c.

As shown in FIG. 48E, the RAN 104 may be connected to
the core network 106. The communication link between the
RAN 104 and the core network 106 may defined as an R3
reference point that includes protocols for facilitating data
transfer and mobility management capabilities, for example.
The core network 106 may include a mobile IP home agent
(MIP-HA) 144, an authentication, authorization, accounting
(AAA) server 146, and a gateway 148. While each of the
foregoing elements are depicted as part of the core network
106, it will be appreciated that any one of these elements may
be owned and/or operated by an entity other than the core
network operator.

The MIP-HA may be responsible for IP address manage-
ment, and may enable the WTRUs 1024, 1025, 102¢ to roam
between different ASNs and/or different core networks. The
MIP-HA 144 may provide the WITRUs 102a,1025, 102¢ with
access to packet-switched networks, such as the Internet 110,
to facilitate communications between the WTRUs 102a,
1024, 102¢ and IP-enabled devices. The AAA server 146 may
be responsible for user authentication and for supporting user
services. The gateway 148 may facilitate interworking with
other networks. For example, the gateway 148 may provide
the WTRUs 1024, 10254, 102¢ with access to circuit-switched
networks, such as the PSTN 108, to facilitate communica-
tions between the WTRUs 102a, 1025, 102¢ and traditional
land-line communications devices. In addition, the gateway
148 may provide the WTRUs 102a, 1025, 102¢ with access to
the networks 112, which may include other wired or wireless
networks that are owned and/or operated by other service
providers.

Although not shown in FIG. 48E, it will be appreciated that
the RAN 104 may be connected to other ASNs and the core
network 106 may be connected to other core networks. The
communication link between the RAN 104 the other ASNs
may be defined as an R4 reference point, which may include
protocols for coordinating the mobility of the WTRUs 102a,
1025, 102¢ between the RAN 104 and the other ASNs. The
communication link between the core network 106 and the

10

15

20

25

30

35

40

45

50

55

60

65

64

other core networks may be defined as an RS reference, which
may include protocols for facilitating interworking between
home core networks and visited core networks.

Although features and elements are described above in
particular combinations, one of ordinary skill in the art will
appreciate that each feature or element can be used alone or in
any combination with the other features and elements. In
addition, the methods described herein may be implemented
in a computer program, software, or firmware incorporated in
a computer-readable medium for execution by a computer or
processor. Examples of computer-readable media include
electronic signals (transmitted over wired or wireless connec-
tions) and computer-readable storage media. Examples of
computer-readable storage media include, but are not limited
to, a read only memory (ROM), a random access memory
(RAM), a register, cache memory, semiconductor memory
devices, magnetic media such as internal hard disks and
removable disks, magneto-optical media, and optical media
such as CD-ROM disks, and digital versatile disks (DVDs). A
processor in association with software may be used to imple-
ment a radio frequency transceiver for use in a WTRU, UE,
terminal, base station, RNC, or any host computer.

CONCLUSION

The Draft ETSI TS 102 690V 0.12.3 (2011-06) and earlier
versions of the same (collectively “Draft ETSI Standards for
M2M Communications™) include a number of terms having
given definitions that define meanings of such terms within
context of the Draft ETSI Standards for M2M Communica-
tions. Incorporated herein by reference are the terms and
associated definitions specified, disclosed and/or referred to
by the Draft ETSITS 102 690 V0.12.3 (2011-06) and earlier
versions of the same.

EMBODIMENTS

In an embodiment, a method may include implementing
one or more management layers for managing M2M entities
in an M2M environment. The method may also include using
a plurality of management layers to manage a M2M area
network, wherein the M2M area network may include one or
more M2M end devices. The M2M end devices may include,
for example, an M2M gateway and/or an M2M device. The
management layers may include any of an application man-
agement layer, service management layer, network manage-
ment layer and a device management layer. The management
layers may provide any of configuration management, fault
management, and performance management of the M2M
entities.

In an embodiment, a method may include configuring a
first M2M entity with a service capability (“SC”) for remote
entity management (“REM”) and with a resource structure
having a subordinate resource structure for performing REM
of'a second M2M entity in accordance with one of a plurality
of management layers. The method may further include per-
forming REM of the second M2M entity by manipulating any
of a resource and attribute of the subordinate resource struc-
ture.

A method as in the preceding embodiment, wherein the
first M2M entity may be an M2M server, and wherein the
second M2M entity may be an M2M application, an M2M
service capability, an M2M area network, an M2M gateway
or an M2M device.

A method as in at least one of the preceding embodiments,
wherein the plurality of management layers may include at

US 9,426,222 B2

65

least two of a device management layer, a network manage-
ment layer, a service management layer and an application
management layer.

A method as in at least one of the preceding embodiments,
wherein the subordinate resource structure for remote entity
management of a second M2M entity may include a resource
structure for remote entity management of a M2M applica-
tion in accordance with an application management layer.

A method as in the preceding embodiment, wherein the
application management layer may include one or more func-
tions for performing application lifecycle management.

A method as in at least one of the preceding embodiments,
wherein the subordinate resource structure for remote entity
management of a second M2M entity may include a resource
structure for remote entity management of a M2M service
capability in accordance with a service management layer.

A method as in the preceding embodiment, wherein the
service management comprises functions for performing
software management and/or firmware management.

A method as in at least one of the preceding embodiments,
wherein the subordinate resource structure for remote entity
management of a second M2M entity may include a resource
structure for remote entity management of a M2M area net-
work in accordance with a network management layer.

A method as in at least one of the preceding embodiments,
wherein the subordinate resource structure for remote entity
management of a second M2M entity may include a resource
structure for remote entity management of a M2M device in
accordance with a device management layer.

A method as in at least one of the preceding embodiments,
wherein each the plurality of management layers may define
one or more functions for performing any of configuration
management, fault management, and performance manage-
ment of the second M2M entity.

A method as in at least one of the preceding embodiments
may further include receiving, at the first M2M entity, a
command to manipulate any of the resource and attribute of
the subordinate resource structure, wherein REM of the sec-
ond M2M entity may be performed responsive to the com-
mand.

A method as in the preceding embodiment, wherein the
command comprises a RESTful method.

A method as in at least one of the preceding embodiments
may further include receiving, at the first M2M entity, a first
command to manipulate any of the resource and attribute of
the subordinate resource structure.

A method as in the preceding embodiment, wherein per-
forming REM of the second M2M entity may include send-
ing, to the second M2M entity, a second command to manipu-
late any of the resource and attribute of the subordinate
resource structure, and performing REM of the second M2M
entity responsive to the received second command.

A method as in the preceding embodiment, wherein both of
the first and second commands may include a RESTful
method.

A method as in at least one of the preceding embodiments,
wherein the first command may include a RESTful method,
and wherein the second command comprise a non-RESTful
method.

A method as in at least one of the preceding embodiments,
wherein performing REM of the second M2M entity may
include sending, to the second M2M entity, a command to
manipulate any of the resource and attribute of the subordi-
nate resource structure, and performing REM of the second
M2M entity responsive to the received command.

20

30

35

40

45

66

A method as in the preceding embodiment, wherein the
command may be either anon-RESTful method ora RESTful
method.

A method as in at least one of the preceding embodiments,
wherein the second M2M entity may include a copy of the
subordinate resource structure, and wherein performing
REM of the second M2M entity comprises manipulating the
copy of the subordinate resource structure to replicate the
subordinate resource structure after manipulating any of a
resource and attribute of the subordinate resource structure.

In an embodiment, an apparatus may include a first M2M
entity configured with a SC for REM and with a resource
structure having a subordinate resource structure for perform-
ing REM of a second M2M entity in accordance with one of
a plurality of management layers. The apparatus may further
include a processor adapted to perform REM of the second
M2M entity by manipulating any of a resource and attribute
of the subordinate resource structure.

An apparatus as in the preceding embodiment, wherein the
first M2M entity may include an M2M server, and wherein
the second M2M entity may include an M2M application, an
M2M service capability, an M2M area network, an M2M
gateway or an M2M device.

An apparatus as in at least one of the preceding embodi-
ments, wherein the plurality of management layers may
include two or more of a device management layer, a network
management layer, a service management layer, and an appli-
cation management layer.

An apparatus as in at least one of the preceding embodi-
ments, wherein the subordinate resource structure for REM of
a second M2M entity may include a resource structure for
REM ofa M2M application in accordance with an application
management layer.

An apparatus as in at least one of the preceding embodi-
ments, wherein the application management layer may
include functions for performing application lifecycle man-
agement.

An apparatus as in at least one of the preceding embodi-
ments, wherein the subordinate resource structure for remote
entity management of a second M2M entity may include a
resource structure for remote entity management of a M2M
service capability in accordance with a service management
layer.

An apparatus as in the preceding embodiment, wherein the
service management may include functions for performing
software management and/or firmware management.

An apparatus as in at least one of the preceding embodi-
ments, wherein the subordinate resource structure for remote
entity management of a second M2M entity may include a
resource structure for remote entity management of a M2M
area network in accordance with a network management
layer.

An apparatus as in at least one of the preceding embodi-
ments, wherein subordinate resource structure for remote
entity management of a second M2M entity may include a
resource structure for remote entity management of a M2M
device in accordance with a device management layer.

An apparatus as in at least one of the preceding embodi-
ments, wherein each the plurality of management layers may
define functions for performing any of configuration manage-
ment, fault management, and performance management of
the second M2M entity.

An apparatus as in at least one of the preceding embodi-
ments, wherein the first M2M entity may include: a SC for
receiving a command to manipulate any of the resource and

US 9,426,222 B2

67

attribute of the subordinate resource structure, wherein REM
of'the second M2M entity may be performed responsive to the
command.

An apparatus as in at least one of the preceding embodi-
ments, wherein the command may be a RESTful method.

An apparatus as in at least one of the preceding embodi-
ments, wherein the first M2M entity may include (i) a SC for
receiving a first command to manipulate any of the resource
and attribute of the subordinate resource structure, and (ii) a
SC for communicating, to the second M2M entity, a second
command to manipulate any of a copy of the resource and a
copy of the attribute of a copy of the subordinate resource
structure maintained at the second M2M entity.

An apparatus as in the preceding embodiment, wherein the
processor may be adapted to send, to the second M2M entity,
the second command to cause manipulation of any of the copy
of'the resource and the copy of'the attribute of the copy ofthe
subordinate resource structure maintained at the second
M2M entity responsive to second command.

An apparatus as in at least one of the preceding embodi-
ments, wherein both of'the first and second commands may be
a RESTful method, or alternatively, wherein the first com-
mand may be a RESTful method and the second command
may be a non-RESTful method.

An apparatus as in at least one of the preceding embodi-
ments, wherein the first M2M entity may include (i) a SC for
communicating, to the second M2M entity, a command to
manipulate any of a copy of the resource and a copy of the
attribute of a copy of the subordinate resource structure main-
tained at the second M2M entity.

An apparatus as in the preceding embodiment, wherein the
processor may be adapted to send, to the second M2M entity,
the command to cause manipulation of any of the copy of the
resource and the copy of the attribute of the copy of the
subordinate resource structure maintained at the second
M2M entity responsive to second command.

An apparatus as in the preceding embodiment, wherein the
command may be a non-RESTful method or, alternatively, a
REST{ul method.

In an embodiment, a system may include a server having a
first M2M entity configured with a service capability for
REM and with a resource structure having a subordinate
resource structure for performing REM of a second M2M
entity in accordance with one of a plurality of management
layers. The system may also include a processor adapted to
perform REM of the second M2M entity by manipulating any
of a resource and attribute of the subordinate resource struc-
ture. The system may further include a device having a second
M2M entity configured with a copy of the subordinate
resource structure; and a processor adapted to manipulate the
copy of the subordinate resource structure to replicate the
subordinate resource structure after manipulation by the
server.

In an embodiment, a tangible computer readable storage
medium may have stored thereon executable instructions for
(1) configuring a first M2M entity with a SC for REM and with
a resource structure having a subordinate resource structure
for performing REM of a second M2M entity in accordance
with one of a plurality of management layers; and (ii) per-
forming REM of the second M2M entity by manipulating any
of a resource and attribute of the subordinate resource struc-
ture. The executable instructions may be loadable into a
memory of and executable by a computing device.

In an embodiment, a tangible computer readable storage
medium may have stored thereon executable instructions for
(1) configuring a first M2M entity with a SC for REM and with
a resource structure having a subordinate resource structure

10

15

20

25

30

35

40

45

50

55

60

65

68

for performing REM of a second M2M entity in accordance
with one of a plurality of management layers; (ii) performing
REM of the second M2M entity by manipulating any of a
resource and attribute of the subordinate resource structure;
and (iii) manipulating a copy of a subordinate resource struc-
ture maintained by the second M2M entity so as to replicate
the subordinate resource structure after manipulation of any
of the resource and the attribute of the subordinate resource
structure.

In an embodiment, a method may include implementing a
client/server-based remote entity management (XREM)
model for performing management functions in an M2M
environment. The method may also include applying the
model to M2M devices in the M2M environment.

In an embodiment, a method may include using a tunnel-
based technique to implement xREM in a M2M environment
using multiple management protocols; and applying the
model to M2M devices in the M2M environment.

In an embodiment, a method may include providing a
resource command comprising an attribute component, and
communicating the resource command to a M2M end device.

A method as in the preceding embodiment, wherein the
resource command may be a non-RESTful command.

In an embodiment, a method may include providing a
resource commands structure having an attribute component
and possibly some sub-parameters. The method may also
include communicating the resource commands to an M2M
end device. Traditional non-RESTful management com-
mands may be easily operated onto M2M end devices using
RESTful methods.

In an embodiment, a method may include storing ata M2M
device or an M2M gateway, an accessHistories resource
structure, detecting an operation at the M2M device or the
M2M gateway and manipulating the accessHistories resource
structure to memorialize at least one detail associated with the
operation.

In an embodiment, a method may include receiving a
request for delegating authority over a machine-to-machine
(M2M) device or gateway, and authorizing the authority over
the M2M device or gateway.

In an embodiment, a method may be implemented at an
M2M end device. The method may include receiving a
resource command having one or more attribute components
for managing the M2M end device.

A method as in the preceding embodiment may also
include applying one or more management functions based
on the resource command.

In an embodiment, a method may include providing a
resource command including one or more attribute compo-
nents, and communicating the resource command to an M2M
end device.

In an embodiment, a method for performing xXREM in a
first system may include, for example, first, second and third
devices adapted for communicating in accordance with a
protocol for M2M communications (“M2M-communications
protocol”), such as Draft ETSI TS 102 690. The M2M-com-
munications protocol may define a stack or collection of
logical layers for managing entities residing at each of the
logical layers (“management layers”). These management
layers may include, for example, an M2M application man-
agement layer, an M2M service capabilities layer, an M2M
Network Management layer and a M2M device management
layer. The first device may define an entity residing at a first
logical layer of the management layers (“first management
layer”). The entity may be, for example, an M2M application,
an M2M service capability, an M2M are network, an M2M
gateway or a M2M device. The first device may include a first

US 9,426,222 B2

69

data structure that defines a resource for managing the entity
in accordance with the first management layer (“first-man-
agement-layer resource”). The second device may include a
second data structure that defines first-management-layer
resource, as well. And the second device may communica-
tively couple with the first and third devices.

The method may include providing, from the second
device to the third device, an identifier identifying the first-
management-layer resource. The method may also include
receiving, at the second device from the third device, the
identifier and information for application to the first-manage-
ment-layer resource, and applying the information to the first-
management-layer resource.

In one or more instances, applying the information to the
first-management-layer resource may include manipulating
the second data structure. Alternatively, applying the infor-
mation to the first-management-layer resource may include
sending the information to the first device from the second
device to cause the first device to manipulate the first data
structure.

The identifier may include and/or be, for example, any of a
uniform resource identifier, link and address. The first-man-
agement-layer resource may include and/or define a manage-
ment object. Further, each of the first, second and third
devices may include a module for communicating in accor-
dance with the M2M-communications protocol. The third
device may further include an application, e.g., an M2M
application, adapted to provide the information for applica-
tion to the first-management-layer resource, and wherein
execution of the application involves communication of
information in accordance with the M2M-communication
protocol. The first device may also include an application, and
execution of such application involves communication of
information in accordance with the M2M-communication
protocol.

In one or more embodiments, the first device may be an
appliance, the third device may be a wireless transmit/receive
unit (“WTRU”), and second device may include a server.

As another example, an apparatus for xREM is disclosed.
The apparatus includes a first device adapted for communi-
cating in accordance with the M2M-communications proto-
col. As above, the M2M-communication protocol defines a
stack or collection of the management layers. The first device
may include a first data structure. The first data structure
defines a first-management-layer resource for managing, in
accordance with a first management layer, an entity of a
second device that resides at the first management layer. The
first device may also communicatively couple with the sec-
ond device and a third device. The first device may further
include memory adapted to store executable instructions
adapted to: provide, to the third device, an identifier identi-
fying the first-management-layer resource; receive, from the
third device, the identifier and information for application to
first-management-layer resource; and apply the information
to the first-management-layer resource. The first device may
also include a processor adapted to obtain the executable
instructions from the memory and to execute the executable
instructions.

The identifier may include and/or be, for example, any of a
uniform resource identifier, link and address. The first-man-
agement-layer resource may include a management object.

The first device may include a module for communicating
in accordance with the M2M-communications protocol. The
information for application to first-management-layer
resource may be received from an application of the third

10

15

20

25

30

35

40

45

50

55

60

65

70

device. The first device may include a server, the second
device may be an appliance, and the third device may be a
WTRU.

Another example of a method for performing xXREM in
second system is disclosed. The second system may include
first and second devices adapted for communicating in accor-
dance with the M2M-communications protocol. The M2M-
communications protocol defines the management layers.
The first device defines an entity residing at a first manage-
ment layer, and comprises a first data structure defining the
first-management-layer resource. The second device includes
a second data structure that defines the first-management-
layer resource, as well. The first device may communicatively
couple with the second device.

The method may include the first device negotiating with
the second device to define a type of management protocol for
managing the entity in accordance with the first management
layer. Negotiating with the second device may include, for
example, sending, from the first device to the second device,
a first message to request registration of a service capability
layer (“SCL”) at the second device, wherein the first message
includes an attribute defining the type of management proto-
col and a first value assigned to the attribute. Negotiating with
the second device may also include receiving, at the first
device from the second device, a second message sent in
response to the first message. The second message may
include a second value assigned to the attribute defining the
type of management protocol.

In one or more embodiments, negotiating with the second
device may further include receiving, at the first device from
the second device, a third message to request an update to the
registration of the SCL, wherein the third message includes
the second value assigned to the attribute defining the type of
management protocol.

As an alternative, negotiating with the second device may
include sending, from the first device to the second device, a
first message to request creation of an object in the SCL at the
second device. To facilitate this, the first message may include
an attribute defining the type of management protocol and a
first value assigned to the attribute. Negotiating with the
second device may further include receiving, at the first
device from the second device, a second message sent in
response to the first message. The second message may
include a second value assigned to the attribute.

As another alternative, negotiating with the second device
may include sending, from the first device to the second
device, a first message to request an update to an object in the
SCL at the second device. The first message may include an
identifier for identifying the attribute defining the type of
management protocol and a first value assigned to the
attribute. Negotiating with the second device may also
include receiving, at the first device from the second device, a
second message sent in response to the first message. The
second message may include a second value assigned to the
attribute.

In yet another alternative, negotiating with the second
device may include receiving, at the first device from the
second device, a first message to request an update to an
object in the SCL at the second device. To facilitate the
update, the first message may include an identifier identifying
the attribute defining the type of management protocol and a
first value assigned to the attribute. Negotiating with the
second device may also include sending a second message
from the first device to the second device, in response to the
first message. The second message may include a second
value assigned to the attribute.

US 9,426,222 B2

71

In another alternative, negotiating with the second device
may include sending, from the first device to a third device, a
first message to discover the second device. The first message
may include an attribute defining the type of management
protocol and a first value assigned to the attribute. Negotiating
with the second device may also include receiving, at the first
device from the third device, a second message sent in
response to the first message. This second message may
include a second value assigned to the attribute defining the
type of protocol. The second value assigned to the attribute
may be obtained from an SCL of the second device. Negoti-
ating with the second device may further include selecting the
second device for registration of an SCL of the first device if
the first and second values are equal.

The type of management protocol may be any of a Simple
Network Management Protocol (“SNMP”), a Broadband
Forums (“BBF”’) TR-069 CPE WAN Management Protocol
and an Open Mobile Alliance (OMA) Device Management
(DM) protocol.

A further example of'a method for performing xREM in the
second system is disclosed. The method may include inform-
ing the second device of a type of management protocol for
managing the entity in accordance with the first logical layer.

Another example of a method for performing xREM dis-
closed. The method may include a first device receiving, from
a second device, a request for delegating authority for xREM
of a third device to the first device; and in response the
request, the second device may pass authority to the first
device. After obtaining authority, the first device may execute
authority over the third device.

In one or more embodiments, a method may include
receiving, at a first entity from a second entity, a request for
performing a RESTful method. The first entity may include a
data structure of a resource defining a command (“command
resource”). The request may include an identifier for identi-
fying the command resource and information for executing
the command. The method may also include executing the
command as a function of the identifier and the information
for executing the command. The identifier may be any of a
uniform resource identifier, link and address.

In one or more embodiments, the first entity may include
first and second data structure of first and second command
resources, respectively, and the identifier may include and/or
be a pointer to the second resource.

In one or more embodiments, a method may include
receiving, at a first entity from a second entity, a request for
performing a RESTful method. The first entity may include a
data structure of a command resource defining a command.
The request may include an identifier for identifying the
command resource and information for executing the com-
mand. The method may also include generating, in response
to the request, a first instance of the resource, and updating the
identifier to identify the first instance of the resource, and
executing the command as a function of the identifier and the
information for executing the command.

In one or more embodiments, a method may include
receiving, at a first entity from a second entity, a first request
for performing a RESTful method. The first entity may
include a data structure of a command resource, the first
request may include a first identifier for identifying the com-
mand resource and first information for executing the com-
mand. The method may also include generating, in response
to the first request, a first instance of the command resource;
updating the first identifier to identify the first instance of the
command resource; receiving, at the first entity from the
second entity, a second request for performing a RESTful
method. The second request may include a second identifier

25

30

40

45

55

72

for identifying the command resource and second informa-
tion for executing the command. The method may further
include generating, in response to the second request, a sec-
ond instance of the command resource; updating the second
identifier to identify the second instance of the command
resource; executing the command as a function of the first
identifier and the first information for executing the com-
mand; and executing the command as a function of the second
identifier and the second information for executing the com-
mand.

In an embodiment a method for performing XxREM in
accordance with a protocol for machine-to-machine commu-
nications is disclosed. The method may include receiving, at
a first entity from a second entity, a request for performing a
RESTful method (“RESTful-method request”). The first
entity may include a data structure modifiable by the RESTful
method. This data structure may be, for example, a data
structure representative of a service-capability layer (“SCL”),
including, for example, any data structures referred to herein
as sclbase and the like. The RESTful-method request may
identify a resource associated with a command executable by
the first entity (hereinafter “resource command”). The
method may also include performing the RESTful method to
invoke a modification to the data structure in accordance with
the resource command.

In one or more embodiments, the RESTful method may be
a RESTful method CREATE, a RESTful method
RETRIEVE, a RESTful method UPDATE and/or a RESTful
method DELETE. In embodiments in which the RESTful
method is, for example, a RESTful method CREATE, per-
forming the RESTful method may include instantiating, in
the data structure, a subordinate data structure representative
of the resource command (hereinafter “command-resource
structure”).

In embodiments in which the RESTful method is a REST-
ful method DELETE, performing the RESTful method may
include deleting the command-resource structure from the
data structure. In embodiments in which the RESTful method
is a RESTful method RETRIEVE, performing the RESTful
method may include sending, to the second entity, a copy of
some or all of command-resource structure and/or a state of
command-resource structure (“command-resource state”).

In embodiments in which the RESTful method is a REST-
ful method UPDATE, performing the RESTful method may
include moditying the command-resource structure to invoke
achange in a state of the command (“command state”). In one
or more embodiments, modifying the subordinate data struc-
ture may include modifying the command-resource structure
to invoke an execution of the command (“command execu-
tion”). The command execution may be invoked, for example,
by the first entity responsive to detecting such modification to
the command-resource structure.

In one or more embodiments, the resource command may
define a subordinate resource (“sub-resource”) for invoking
command execution (“command-execution sub-resource”).
This command-execution sub-resource may be, for example,
one or more embodiments of a sub-resource referred to herein
below as execEnable and the like. One or more element of the
command-resource structure (“command-resource-structure
elements”) may be representative of the command-execution
sub-resource.

In one or more embodiments, the RESTful-method request
may include information for modifying the command-execu-
tion sub-resource to invoke a command execution. In these
embodiments, modifying the command-execution sub-re-
source may include modifying the command-resource-struc-

US 9,426,222 B2

73

ture elements representative of the command-execution sub-
resource with the information so as to invoke a command
execution.

The information for modifying the command-execution
sub-resource to invoke a command execution may be a num-
ber, integer, character, code, etc. that may be assigned and
interpreted to invoke a command execution. By way of
example, the information for modifying the command-execu-
tion sub-resource to invoke the command execution may be a
“0”, and therefore, modifying the command-resource-struc-
ture elements representative of the command-execution sub-
resource with a “0” invokes a command execution.

In one or more embodiments, the resource command may
define an attribute for invoking a command execution. In
these embodiments, the command-resource-structure ele-
ments may be representative of the attribute, and such ele-
ments may be identifiable by an identifier (“attribute identi-
fier”). This command-execution attribute identifier may be,
for example, one or more embodiments of an attribute
referred to herein below as execEnable and the like.

The RESTful-method request may include the attribute
identifier. Further, selection of the command-resource-struc-
ture elements representative of the attribute may invoke a
command execution. And modifying the command-resource
structure to invoke an execution of the command may include
using the attribute identifier to select the command-resource-
structure elements representative of the attribute, which in
turn, invokes an execution of the command.

In one or more embodiments, modifying the command-
resource structure may include modifying the command-re-
source structure to invoke a pause to a command execution.
The pause to the command execution may be invoked, for
example, by the first entity responsive to detecting such modi-
fication to the command-resource structure.

In one or more embodiments, the resource command may
define a sub-resource for invoking the pause to the command
execution. This sub-resource may be, for example, one or
more embodiments of a sub-resource referred to herein below
as execEnable and the like. In one or more embodiments, the
RESTful-method request may include information for modi-
fying the command-execution sub-resource to invoke a pause
to the command execution. In these embodiments, moditying
the command-resource structure to invoke a pause to the
command execution may include modifying the command-
resource-structure elements representative of the command-
execution sub-resource to invoke the pause. The information
for modifying the command-execution sub-resource may be a
number, integer, character, code, etc. that may be assigned
and interpreted to invoke a pause to the command execution.
By way of example, the information for modifying the com-
mand-execution sub-resource to invoke the pause may be a
“17, and therefore, modifying the command-resource-struc-
ture elements representative of the command-execution sub-
resource with a “1” invokes a pause to a command execution.

In one or more embodiments, the resource command may
define an attribute for invoking a pause to a command execu-
tion (“pause-execution attribute”). One or more of the com-
mand-resource-structure elements may be representative of
the pause-execution attribute, and such elements may be iden-
tifiable by a corresponding attribute identifier. This pause-
execution attribute may be, for example, one or more embodi-
ments of an attribute referred to herein below as execPause
and the like. The RESTful-method request may include the
pause-execution-attribute identifier. Further, selection of the
command-resource-structure elements representative of the
pause-execution attribute may invoke a pause to a command
execution. And modifying the command-resource structureto

20

30

35

40

45

55

74

invoke a pause to a command execution may include using the
pause-execution-attribute identifier to select the command-
resource-structure elements representative of the pause-ex-
ecution attribute, which in turn, invokes a pause to a com-
mand execution.

In one or more embodiments, modifying the command-
resource structure may include modifying the command-re-
source structure to cause a paused execution of the command
to resume execution (“resume-command execution”). The
resume-command execution may be invoked, for example, by
the first entity responsive to detecting the modification to the
command-resource structure to cause a resume-command
execution.

In one or more embodiments, the resource command may
define a sub-resource for invoking a resume-command execu-
tion. This sub-resource may be, for example, one or more
embodiments of a sub-resource referred to herein below as
execEnable and the like. In one or more embodiments, the
RESTful-method request may include information for modi-
fying the command-execution sub-resource to invoke a
resume-command execution. In these embodiments, modify-
ing the command-resource structure to invoke a resume-com-
mand execution may include modifying the command-re-
source-structure elements representative of the command-
execution sub-resource to invoke the resume-command
execution. This information may be a number, integer, char-
acter, code, etc. that may be assigned and interpreted to
invoke a resume-command execution. By way of example,
the information for modifying the command-execution sub-
resource to invoke the resume-command execution may be a
“27, and therefore, modifying the command-resource-struc-
ture elements representative of the resume-command-execu-
tion sub-resource with a “2” invokes a resume-command
execution.

In one or more embodiments, the resource command may
define an attribute for invoking a resume-command execution
(“resume-execution attribute”). One or more of the com-
mand-resource-structure elements may be representative of
the resume-execution attribute, and such elements may be
identifiable by a corresponding attribute identifier. This
resume-execution attribute may be, for example, one or more
embodiments of an attribute referred to herein below as
execResume and the like. The RESTful-method request may
include the resume-execution-attribute identifier. Further,
selection of the command-resource-structure elements repre-
sentative of the resume-execution attribute may invoke a
resume-command execution. Modifying the command-re-
source structure to invoke a resume-command execution may
include using the resume-execution-attribute identifier to
select the command-resource-structure elements representa-
tive of the resume-execution attribute, which in turn, invokes
a resume-command execution.

In one or more embodiments, modifying the command-
resource structure may include modifying the command-re-
source structure to invoke a cancellation of a command
execution (“cancel-command execution”). The cancel-com-
mand execution may be invoked, for example, by the first
entity responsive to detecting the modification to the com-
mand-resource structure to invoke a cancel-command execu-
tion.

In one or more embodiments, the resource command may
define a sub-resource for invoking a cancel-command execu-
tion. This sub-resource may be, for example, one or more
embodiments of a sub-resource referred to herein below as
execEnable and the like. In one or more embodiments, the
RESTful-method request may include information for modi-
fying the command-execution sub-resource to invoke a can-

US 9,426,222 B2

75

cel-command execution. In these embodiments, modifying
the command-resource structure to invoke a cancel-command
execution may include modifying the command-resource-
structure elements representative of the command-execution
sub-resource to invoke the cancel-command execution. This
information may be a number, integer, character, code, etc.
that may be assigned and interpreted to invoke a cancel-
command execution. By way of example, the information for
modifying the command-execution sub-resource to invoke
the cancel-command execution may be a “3”, and therefore,
modifying the command-resource-structure elements repre-
sentative of the cancel-command-execution sub-resource
with a “3” invokes a cancel-command execution.

In one or more embodiments, the resource command may
define an attribute for invoking a cancel-command execution
(“cancel-execution attribute”). One or more of the command-
resource-structure elements may be representative of the can-
cel-execution attribute, and such elements may be identifiable
by a corresponding attribute identifier. This cancel-execution
attribute may be, for example, one or more embodiments of
an attribute referred to herein below as execDisable and the
like. The RESTful-method request may include the cancel-
execution-attribute identifier. Further, selection of the com-
mand-resource-structure elements representative of the can-
cel-execution attribute may invoke a cancel-command
execution. Modifying the command-resource structure to
invoke a cancel-command execution may include using the
cancel-execution-attribute identifier to select the command-
resource-structure elements representative of the cancel-ex-
ecution attribute, which in turn, invokes a cancel-command
execution.

In one or more embodiments in which the RESTful method
is a RESTful method DELETE, performing the RESTful
method may include modifying the command-resource struc-
ture to invoke a change in a state of a command execution, and
deleting the command-resource structure from the data struc-
ture.

In one or more embodiments, modifying the command-
resource structure may include modifying the command-re-
source structure to invoke a cancel-command execution. The
cancel-command execution may also be invoked by the first
entity responsive to detecting the modification to the com-
mand-resource structure to invoke a cancel-command execu-
tion. Alternatively, the cancel-command execution may be
invoked, for example, by the first entity responsive to the
RESTful method DELETE.

In one or more embodiments, modifying the command-
resource structure to invoke a cancel-command execution
may include modifying the command-resource-structure ele-
ments representative of the command-execution sub-resource
to invoke the cancel-command execution, as above. In one or
more embodiments, modifying the command-resource struc-
ture to invoke a cancel-command execution may include
using the cancel-execution-attribute identifier to select the
command-resource-structure elements representative of the
cancel-execution attribute, which in turn, invokes a cancel-
command execution.

An alternative method for performing remote entity man-
agement in accordance with a protocol for machine-to-ma-
chine communications is disclosed. This method may include
receiving, at the first entity from the second entity, a RESTful-
method request. The first entity may include a data structure
modifiable by the RESTful method. The data structure may
include a subordinate data structure representative of a first
resource, where the first resource defines an operation for
invoking a command-resource state. The subordinate data
structure may be identifiable by an identifier, and wherein the

10

15

20

25

30

35

40

45

50

55

60

65

76

RESTful-method request may include the identifier and may
identify the resource command. The method may also include
performing the RESTful method to invoke a modification to
the data structure in accordance with the identifier and the
resource command.

In one or more embodiments, the operation for invoking a
change in a command-resource state may include an opera-
tion to invoke a command execution, to invoke a pause to
command execution, to invoke a resume-command execution
or to invoke a cancel-command execution.

In an embodiment, a method for performing xREM in
accordance with a protocol for machine-to-machine commu-
nications may include receiving, at a first entity from a second
entity, a request for performing a RESTful method (“REST-
ful-method request”). The first entity may include a data
structure modifiable by the RESTful method. This data struc-
ture may be, for example, a data structure representative of a
service-capability layer (“SCL”), including, for example, any
data structures referred to herein as sclbase and the like. The
RESTful-method request may identify a resource associated
with a command executable by a third entity (hereinafter
“resource command”). The method may also include per-
forming the RESTful method to invoke a modification to the
data structure in accordance with the resource command.

In one or more embodiments, the RESTful method may be
a RESTful method CREATE, a RESTful method
RETRIEVE, a RESTful method UPDATE and/or a RESTful
method DELETE. In embodiments in which the RESTful
method is, for example, a RESTful method CREATE, per-
forming the RESTful method may include instantiating, in
the data structure, a subordinate data structure representative
of the resource command (hereinafter “command-resource
structure”).

In embodiments in which the RESTful method is a REST-
ful method DELETE, performing the RESTful method may
include deleting the command-resource structure from the
data structure. In embodiments in which the RESTful method
is a RESTful method RETRIEVE, performing the RESTful
method may include sending, to the second entity, a copy of
some or all of command-resource structure and/or a state of
command-resource structure (“command-resource state”).

In embodiments in which the RESTful method is a REST-
ful method UPDATE, performing the RESTful method may
include moditying the command-resource structure to invoke
achange in a state of the command (“command state”). In one
or more embodiments, modifying the subordinate data struc-
ture may include modifying the command-resource structure
to invoke an execution of the command (“command execu-
tion”). The command execution may be invoked, for example,
by the first entity responsive to detecting such modification to
the command-resource structure.

In one or more embodiments, the resource command may
define a subordinate resource (“sub-resource”) for invoking
command execution (“command-execution sub-resource”).
This command-execution sub-resource may be, for example,
one or more embodiments of a sub-resource referred to herein
below as execEnable and the like. One or more element of the
command-resource structure (“command-resource-structure
elements”) may be representative of the command-execution
sub-resource.

In one or more embodiments, the RESTful-method request
may include information for modifying the command-execu-
tion sub-resource to invoke a command execution. In these
embodiments, modifying the command-execution sub-re-
source may include modifying the command-resource-struc-

US 9,426,222 B2

77

ture elements representative of the command-execution sub-
resource with the information so as to invoke a command
execution.

The information for modifying the command-execution
sub-resource to invoke a command execution may be a num-
ber, integer, character, code, etc. that may be assigned and
interpreted to invoke a command execution. By way of
example, the information for modifying the command-execu-
tion sub-resource to invoke the command execution may be a
“0”, and therefore, modifying the command-resource-struc-
ture elements representative of the command-execution sub-
resource with a “0” invokes a command execution.

In one or more embodiments, the resource command may
define an attribute for invoking a command execution. In
these embodiments, the command-resource-structure ele-
ments may be representative of the attribute, and such ele-
ments may be identifiable by an identifier (“attribute identi-
fier”). This command-execution attribute identifier may be,
for example, one or more embodiments of an attribute
referred to herein below as execEnable and the like.

The RESTful-method request may include the attribute
identifier. Further, selection of the command-resource-struc-
ture elements representative of the attribute may invoke a
command execution. And modifying the command-resource
structure to invoke an execution of the command may include
using the attribute identifier to select the command-resource-
structure elements representative of the attribute, which in
turn, invokes an execution of the command.

In one or more embodiments, modifying the command-
resource structure may include modifying the command-re-
source structure to invoke a pause to a command execution.
The pause to the command execution may be invoked, for
example, by the first entity responsive to detecting such modi-
fication to the command-resource structure.

In one or more embodiments, the resource command may
define a sub-resource for invoking the pause to the command
execution. This sub-resource may be, for example, one or
more embodiments of a sub-resource referred to herein below
as execEnable and the like. In one or more embodiments, the
RESTful-method request may include information for modi-
fying the command-execution sub-resource to invoke a pause
to the command execution. In these embodiments, moditying
the command-resource structure to invoke a pause to the
command execution may include modifying the command-
resource-structure elements representative of the command-
execution sub-resource to invoke the pause. The information
for modifying the command-execution sub-resource may be a
number, integer, character, code, etc. that may be assigned
and interpreted to invoke a pause to the command execution.
By way of example, the information for modifying the com-
mand-execution sub-resource to invoke the pause may be a
“17, and therefore, modifying the command-resource-struc-
ture elements representative of the command-execution sub-
resource with a “1” invokes a pause to a command execution.

In one or more embodiments, the resource command may
define an attribute for invoking a pause to a command execu-
tion (“pause-execution attribute”). One or more of the com-
mand-resource-structure elements may be representative of
the pause-execution attribute, and such elements may be iden-
tifiable by a corresponding attribute identifier. This pause-
execution attribute may be, for example, one or more embodi-
ments of an attribute referred to herein below as execPause
and the like. The RESTful-method request may include the
pause-execution-attribute identifier. Further, selection of the
command-resource-structure elements representative of the
pause-execution attribute may invoke a pause to a command
execution. And modifying the command-resource structureto

20

30

35

40

45

55

78

invoke a pause to a command execution may include using the
pause-execution-attribute identifier to select the command-
resource-structure elements representative of the pause-ex-
ecution attribute, which in turn, invokes a pause to a com-
mand execution.

In one or more embodiments, modifying the command-
resource structure may include modifying the command-re-
source structure to cause a paused execution of the command
to resume execution (“resume-command execution”). The
resume-command execution may be invoked, for example, by
the first entity responsive to detecting the modification to the
command-resource structure to cause a resume-command
execution.

In one or more embodiments, the resource command may
define a sub-resource for invoking a resume-command execu-
tion. This sub-resource may be, for example, one or more
embodiments of a sub-resource referred to herein below as
execEnable and the like. In one or more embodiments, the
RESTful-method request may include information for modi-
fying the command-execution sub-resource to invoke a
resume-command execution. In these embodiments, modify-
ing the command-resource structure to invoke a resume-com-
mand execution may include modifying the command-re-
source-structure elements representative of the command-
execution sub-resource to invoke the resume-command
execution. This information may be a number, integer, char-
acter, code, etc. that may be assigned and interpreted to
invoke a resume-command execution. By way of example,
the information for modifying the command-execution sub-
resource to invoke the resume-command execution may be a
“27, and therefore, modifying the command-resource-struc-
ture elements representative of the resume-command-execu-
tion sub-resource with a “2” invokes a resume-command
execution.

In one or more embodiments, the resource command may
define an attribute for invoking a resume-command execution
(“resume-execution attribute”). One or more of the com-
mand-resource-structure elements may be representative of
the resume-execution attribute, and such elements may be
identifiable by a corresponding attribute identifier. This
resume-execution attribute may be, for example, one or more
embodiments of an attribute referred to herein below as
execResume and the like. The RESTful-method request may
include the resume-execution-attribute identifier. Further,
selection of the command-resource-structure elements repre-
sentative of the resume-execution attribute may invoke a
resume-command execution. Modifying the command-re-
source structure to invoke a resume-command execution may
include using the resume-execution-attribute identifier to
select the command-resource-structure elements representa-
tive of the resume-execution attribute, which in turn, invokes
a resume-command execution.

In one or more embodiments, modifying the command-
resource structure may include modifying the command-re-
source structure to invoke a cancellation of a command
execution (“cancel-command execution”). The cancel-com-
mand execution may be invoked, for example, by the first
entity responsive to detecting the modification to the com-
mand-resource structure to invoke a cancel-command execu-
tion.

In one or more embodiments, the resource command may
define a sub-resource for invoking a cancel-command execu-
tion. This sub-resource may be, for example, one or more
embodiments of a sub-resource referred to herein below as
execEnable and the like. In one or more embodiments, the
RESTful-method request may include information for modi-
fying the command-execution sub-resource to invoke a can-

US 9,426,222 B2

79

cel-command execution. In these embodiments, modifying
the command-resource structure to invoke a cancel-command
execution may include modifying the command-resource-
structure elements representative of the command-execution
sub-resource to invoke the cancel-command execution. This
information may be a number, integer, character, code, etc.
that may be assigned and interpreted to invoke a cancel-
command execution. By way of example, the information for
modifying the command-execution sub-resource to invoke
the cancel-command execution may be a “3”, and therefore,
modifying the command-resource-structure elements repre-
sentative of the cancel-command-execution sub-resource
with a “3” invokes a cancel-command execution.

In one or more embodiments, the resource command may
define an attribute for invoking a cancel-command execution
(“cancel-execution attribute”). One or more of the command-
resource-structure elements may be representative of the can-
cel-execution attribute, and such elements may be identifiable
by a corresponding attribute identifier. This cancel-execution
attribute may be, for example, one or more embodiments of
an attribute referred to herein below as execDisable and the
like. The RESTful-method request may include the cancel-
execution-attribute identifier. Further, selection of the com-
mand-resource-structure elements representative of the can-
cel-execution attribute may invoke a cancel-command
execution. Modifying the command-resource structure to
invoke a cancel-command execution may include using the
cancel-execution-attribute identifier to select the command-
resource-structure elements representative of the cancel-ex-
ecution attribute, which in turn, invokes a cancel-command
execution.

In one or more embodiments in which the RESTful method
is a RESTful method DELETE, performing the RESTful
method may include modifying the command-resource struc-
ture to invoke a change in a state of a command execution, and
deleting the command-resource structure from the data struc-
ture.

In one or more embodiments, modifying the command-
resource structure may include modifying the command-re-
source structure to invoke a cancel-command execution. The
cancel-command execution may also be invoked by the first
entity responsive to detecting the modification to the com-
mand-resource structure to invoke a cancel-command execu-
tion. Alternatively, the cancel-command execution may be
invoked, for example, by the first entity responsive to the
RESTful method DELETE.

In one or more embodiments, modifying the command-
resource structure to invoke a cancel-command execution
may include modifying the command-resource-structure ele-
ments representative of the command-execution sub-resource
to invoke the cancel-command execution, as above. In one or
more embodiments, modifying the command-resource struc-
ture to invoke a cancel-command execution may include
using the cancel-execution-attribute identifier to select the
command-resource-structure elements representative of the
cancel-execution attribute, which in turn, invokes a cancel-
command execution.

An alternative method for performing remote entity man-
agement in accordance with a protocol for machine-to-ma-
chine communications is disclosed. This method may include
receiving, at the first entity from the second entity, a RESTful-
method request. The first entity may include a data structure
modifiable by the RESTful method. The data structure may
include a subordinate data structure representative of a first
resource, where the first resource defines an operation for
invoking a command-resource state. The subordinate data
structure may be identifiable by an identifier, and wherein the

25

30

40

45

55

80

RESTful-method request may include the identifier and may
identify the resource command. The method may also include
performing the RESTful method to invoke a modification to
the data structure in accordance with the identifier and the
resource command.

In one or more embodiments, the operation for invoking a
change in a command-resource state may include an opera-
tion to invoke a command execution, to invoke a pause to
command execution, to invoke a resume-command execution
or to invoke a cancel-command execution.

In one or more embodiments, any of the subordinate data
structures for invoking a change in a state of the command
(e.g., a <command>, <commandInstance> or <requestln-
stance>, as described below) may include any of an attribute,
sub-resource, parameter and argument imported from the
data structure to which such subordinate data structure is
subordinated.

In an embodiment, a method may include maintaining an
address mapping of devices, and using the address mapping
to send notifications to the devices. The devices may be
device management devices.

In an embodiment, a method may include managing, at a
device management gateway, M2M devices with service
capability (D), using one or a transparent mode and proxy
mode for managing the M2M devices.

In an embodiment, a method may include managing, at a
device management gateway, M2M devices, and using an
adaptation mode for managing the M2M devices.

In an embodiment, a method may include managing, at a
device management gateway, non-ETSI M2M devices, and
using an adaptation mode for managing the non-ETSI M2M
devices.

In an embodiment, a method may include, at a gateway,
maintaining an address mapping of devices; and using the
address mapping to send notifications to the devices.

A method as in the preceding embodiment, wherein the
devices are device management devices.

A method as in at least one of the preceding embodiments,
wherein the devices may be configured with service capabil-
ity (D).

In an embodiment, a method may include, at a device
management gateway, managing M2M devices with service
capability (D); and using one or a transparent mode and proxy
mode for managing the M2M devices.

In an embodiment, a method may include, at a device
management gateway, managing M2M devices; and using an
adaptation mode for managing the M2M devices.

In an embodiment, a method may include, at a device
management gateway, managing non-ETSI M2M devices;
and using an adaptation mode for managing the non-ETSI
M2M devices.

In an embodiment, a data structure for data modeling M2M
area networks and M2M devices including at least one man-
agement object including etsiAreaNwkInfo, at least one man-
agement object may include etsiAreaNwkDevicelnventory,
at least one management object includes etsiAreaNwkDe-
viceGroups, at least one management object includes etsiAr-
eaNwkGroupOperations, and at least one management object
includes etsiSensors. The data structure may provide at least
one of device inventory and configuration management, area
network configuration management, area network perfor-
mance management, or group management of devices.

Inan embodiment, a method of data modeling for machine-
to-machine (M2M) area network and M2M devices may
include managing a data model for M2M including at least
one management object for an M2M network and at least one
device.

US 9,426,222 B2

81

A method as in the preceding embodiments, wherein the
managing may provide device inventory and configuration
management.

A method as in at least one of the preceding embodiments,
wherein the managing may provide area network configura-
tion management.

A method as in at least one of the preceding embodiments,
wherein the managing may provide area network perfor-
mance management.

A method as in at least one of the preceding embodiments,
wherein the managing may provide group management of
devices.

A method as in at least one of the preceding embodiments,
wherein the at least one management object may include
etsiAreaNwkInfo.

A method as in at least one of the preceding embodiments,
wherein the at least one management object may include
etsiAreaNwkDevicelnventory.

A method as in at least one of the preceding embodiment,
wherein the at least one management object may include
etsiAreaNwkDeviceGroups.

A method as in at least one of the preceding embodiment,
wherein the at least one management object may include
etsiAreaNwkGroupOperations.

A method as in at least one of the preceding embodiment,
wherein the at least one management object may include
etsiSensors.

A method as in at least one of the preceding embodiment,
wherein the at least one management object may include a
sub-resource.

A method as in at least one of the preceding embodiments,
wherein the at least one management object may include a
sub-resource of another management object.

A method as in the preceding embodiments, wherein etsi-
AreaNwklInfo may include areaNwklInstance as a sub-re-
source.

A method as in at least one of the preceding embodiments,
wherein areaNwkInstance may include any of areaNwkID,
areaNwkType, workingChannelFrequency, and address-
Mode as sub-resources.

A method as in at least one of the preceding embodiments,
wherein etsiAreaNwkDevicelnventory may include any of
devicelnstance and deviceApplicationList as groups.

A method as in at least one of the preceding embodiments,
wherein devicelnstance may include at least one of device-
GroupList, etsiBattery, etsiMemory, and etsiSensor as sub-
resources.

A method as in at least one of the preceding embodiments,
wherein devicelnstance may include at least one of device-
Type, devicelD, addressType, areaNwkID, internal address,
external address, sleepinterval, sleepDuration, status, maxR-
trAdvertisements, minDelayBetweenRas, maxRaDelay-
Time, tenativeNceLifetime, hopLimit, rtrSolicitationlnvter-
val, maxRtrSolicitatios, or maxRtrSolicitationInterval as
sub-resources.

A method as in at least one of the preceding embodiments,
wherein etsiAreaNwkDeviceGroups may include device-
Grouplnstance as a sub-resource.

A method as in at least one of the preceding embodiments,
wherein deviceGrouplnstance may include at least one of
grouplD, groupType, groupSize, members, or condition as
sub-resources.

A method as in at least one of the preceding embodiments,
wherein etsiAreaNwkGroupOperations includes operation-
Instance as a sub-resource.

10

25

35

40

45

60

82

A method as in at least one of the preceding embodiments,
wherein operationlnstance may include at least one of
grouplD, enable, disable, results or description as sub-re-
sources.

A method as in at least one of the preceding embodiments,
wherein etsiSensors may include sensorlnstance as a sub-
resource.

A method as in at least one of the preceding embodiments,
wherein sensorlnstance may include at least one of sensorlD,
sensorType, manufacturer, or operations as sub-resources.

A method as in at least one of the preceding embodiments,
wherein operations may include at least one of enable, disable
or result as sub-resources.

In an embodiment, a resource structure for data modeling
machine-to-machine (M2M) area networks and M2M
devices may include at least one management object includes
etsiAreaNwklInfo; at least one management object includes
etsiAreaNwkDevicelnventory; at least one management
object includes etsiAreaNwkDeviceGroups; at least one
management object includes etsiAreaNwkGroupOperations;
and at least one management object includes etsiSensors, the
resource structure providing at least one of device inventory
and configuration management, area network configuration
management, area network performance management, or
group management of devices.

In an embodiment, a data structure for data modeling M2M
area networks and M2M devices includes at least one man-
agement object including etsiAreaNwkInfo, at least one man-
agement object including etsiAreaNwkDevicelnventory, at
least one management object including etsiAreaNwkDevice-
Groups, at least one management object including etsiGroup-
MgmtOperations, and at least one management object includ-
ing etsiSensors. The data structure provides at least one of
device inventory and configuration management, area net-
work configuration management, area network performance
management, or group management of devices.

Inan embodiment, a method of data modeling for machine-
to-machine (M2M) area network and M2M devices may
include managing a data model for M2M including at least
one management object for an M2M network and at least one
device.

A method as in the preceding embodiment, wherein the
managing provides device inventory and configuration man-
agement.

A method as in at least one of the preceding embodiments,
wherein the managing provides area network configuration
management.

A method as in at least one of the preceding embodiments,
wherein the managing provides area network performance
management.

A method as in at least one of the preceding embodiments,
wherein the managing provides group management of
devices.

A method as in at least one of the preceding embodiments,
wherein the at least one management object includes etsiAr-
eaNwklInfo

A method as in at least one of the preceding embodiments,
wherein the at least one management object includes etsiAr-
eaNwkDevicelnventory.

A method as in at least one of the preceding embodiments,
wherein the at least one management object includes etsiAr-
eaNwkDeviceGroups.

A method as in at least one of the preceding embodiments,
wherein the at least one management object includes etsi-
GroupMgmtOperations.

US 9,426,222 B2

83

A method as in at least one of the preceding embodiments,
wherein the at least one management object includes etsiSen-
SOrS.

A method as in at least one of the preceding embodiments,
wherein the at least one management object comprises a
sub-resource.

A method as in at least one of the preceding embodiments,
wherein the at least one management object comprises a
sub-resource of another management object.

A method as in at least one of the preceding embodiments,
wherein etsiAreaNwkInfo includes areaNwklInstance as a
sub-resource.

A method as in at least one of the preceding embodiments,
wherein areaNwkInstance includes at least one of areaN-
wkID, areaNwkType, workingChannelFrequency, address-
Mode, sleepinterval, sleepDuration, numOfDevices, and
attachedDevices as sub-resources.

A method as in at least one of the preceding embodiments,
wherein etsiAreaNwkDevicelnventory includes at least one
of devicelnstance and areaNwkInstance as groups.

A method as in at least one of the preceding embodiments,
wherein devicelnstance includes at least one of groups,
deviceType, devicelD, addressType, areaNwkID, internal-
Address, external Address, sleepinterval, sleepDuration, sta-
tus, etsiBattery, etsiMemory, etsiSensor, blockSize, and
MTU as sub-resources.

A method as in at least one of the preceding embodiments,
wherein devicelnstance includes at least one of 6LoWPAN,
Wi-Fi, RFID, and ZigBee as sub-resources.

A method as in at least one of the preceding embodiments,
wherein etsiAreaNwkDeviceGroup includes deviceGroupln-
stance as a sub-resource.

A method as in at least one of the preceding embodiments,
wherein deviceGrouplnstance includes at least one of
grouplD, groupType, groupSize, members, or condition as
sub-resources.

A method as in at least one of the preceding embodiments,
wherein etsiGroupMgmtOperations includes at least one of
groups, subscriptions, and operationlnstance as sub-re-
sources.

A method as in at least one of the preceding embodiments,
wherein operationInstance includes at least one of groupID,
execEnable, execDisable, execPause, execResume, execSta-
tus, OperationID, execResults, and execParameters as sub-
resources.

A method as in at least one of the preceding embodiments,
wherein etsiSensors includes sensorlnstance as a sub-re-
source.

A method as in at least one of the preceding embodiments,
wherein sensorInstance includes at least one of sensorID,
sensorType, manufacturer, or operations as sub-resources.

A method as in at least one of the preceding embodiments,
wherein operations includes at least one of enable, disable or
result as sub-resources.

In an embodiment, a wireless transmit/receive unit may be
configured to implement a method as in any one of the pre-
ceding embodiments.

In an embodiment, a base station may be configured to
implement a method as in any one of the preceding embodi-
ments.

In an embodiment, a tangible computer readable storage
medium may have stored thereon executable instructions,
loadable into a memory of and executable by a computing
device, for performing a method as in any one of the preced-
ing embodiments.

In an embodiment, a resource structure for data modeling
machine-to-machine (M2M) area networks and M2M

20

25

40

45

55

60

65

84

devices may include at least one management object includ-
ing etsiAreaNwkInfo; at least one management object includ-
ing etsiAreaNwkDevicelnventory; at least one management
object including etsiAreaNwkDeviceGroups; at least one
management object including etsiGroupMgmtOperations;
and at least one management object including etsiSensors, the
resource structure providing at least one of device inventory
and configuration management, area network configuration
management, area network performance management, or
group management of devices.

Variations of the method, apparatus and system described
above are possible without departing from the scope of the
invention. In view of the wide variety of embodiments that
can be applied, it should be understood that the illustrated
embodiments are exemplary only, and should not be taken as
limiting the scope of the following claims. For instance, in the
exemplary embodiments described herein include handheld
devices, which may include or be utilized with any appropri-
ate voltage source, such as a battery and the like, providing
any appropriate voltage.

Although features and elements are described above in
particular combinations, one of ordinary skill in the art will
appreciate that each feature or element can be used alone or in
any combination with the other features and elements. In
addition, the methods described herein may be implemented
in a computer program, software, or firmware incorporated in
a computer-readable medium for execution by a computer or
processor. Examples of computer-readable media include
electronic signals (transmitted over wired or wireless connec-
tions) and computer-readable storage media. Examples of
computer-readable storage media include, but are not limited
to, a read only memory (ROM), a random access memory
(RAM), a register, cache memory, semiconductor memory
devices, magnetic media such as internal hard disks and
removable disks, magneto-optical media, and optical media
such as CD-ROM disks, and digital versatile disks (DVDs). A
processor in association with software may be used to imple-
ment a radio frequency transceiver for use in a WTRU, UE,
terminal, base station, RNC, or any host computer.

Moreover, in the embodiments described above, process-
ing platforms, computing systems, controllers, and other
devices containing processors are noted. These devices may
contain at least one Central Processing Unit (“CPU”) and
memory. In accordance with the practices of persons skilled
in the art of computer programming, reference to acts and
symbolic representations of operations or instructions may be
performed by the various CPUs and memories. Such acts and
operations or instructions may be referred to as being
“executed,” “computer executed” or “CPU executed.”

One of ordinary skill in the art will appreciate that the acts
and symbolically represented operations or instructions
include the manipulation of electrical signals by the CPU. An
electrical system represents data bits that can cause a result-
ing transformation or reduction of the electrical signals and
the maintenance of data bits at memory locations in amemory
system to thereby reconfigure or otherwise alter the CPU’s
operation, as well as other processing of signals. The memory
locations where data bits are maintained are physical loca-
tions that have particular electrical, magnetic, optical, or
organic properties corresponding to or representative of the
data bits. It should be understood that the exemplary embodi-
ments are not limited to the above-mentioned platforms or
CPUs and that other platforms and CPUs may support the
described methods.

The data bits may also be maintained on a computer read-
able medium including magnetic disks, optical disks, and any
other volatile (e.g., Random Access Memory (“RAM”)) or

US 9,426,222 B2

85

non-volatile (e.g., Read-Only Memory (“ROM”)) mass stor-
age system readable by the CPU. The computer readable
medium may include cooperating or interconnected com-
puter readable medium, which exist exclusively on the pro-
cessing system or are distributed among multiple intercon-
nected processing systems that may be local or remote to the
processing system. It should be understood that the exem-
plary embodiments are not limited to the above-mentioned
memories and that other platforms and memories may sup-
port the described methods.

No element, act, or instruction used in the description of the
present application should be construed as critical or essential
to the invention unless explicitly described as such. Also, as
used herein, the article “a” is intended to include one or more
items. Where only one item is intended, the term “one” or
similar language is used. Further, the terms “any of” followed
by a listing of a plurality of items and/or a plurality of cat-
egories of items, as used herein, are intended to include “any
of)” “any combination of,” “any multiple of,” and/or “any
combination of multiples of” the items and/or the categories
of'items, individually or in conjunction with other items and/
or other categories of items. Further, as used herein, the terms
“set” and/or collection are intended to include any number of
items, including zero. Further, as used herein, the term “num-
ber” is intended to include any number, including zero.

Moreover, the claims should not be read as limited to the
described order or elements unless stated to that effect. In
addition, use of the term “means” in any claim is intended to
invoke 35 U.S.C. §112, 96, and any claim without the word
“means” is not so intended.

What is claimed is:

1. A method implemented in a machine-to-machine
(“M2M”) server, the M2M server having a service capability
(“SC”) for remote entity management (“REM”) and a REM
resource structure, the method comprising:

receiving, from a first M2M network application, a first

RESTful method including a first identifier that identi-
fies a first element of a first subordinate resource struc-
ture of the REM resource structure, wherein the first
subordinate resource structure is configured for a first
management command, and wherein the first element is
representative of a first function for setting any of an
execution state and execution mode of the first manage-
ment command;

translating the first function to a device management com-

mand for a device that is accessible via a device man-
agement server,

sending the device management command to the device

management server;

receiving, from the device management server, a response

including information associated with invoking the
device management command;

storing the information associated with invoking the device

management command in a second element of the first
subordinate resource structure, wherein the second ele-
ment is linked to the first element; and
providing the information from the second element to the
M2M network application;

receiving, from a second M2M network application, a sec-
ond RESTful method including a second identifier that
identifies a third element of a second subordinate
resource structure of the REM resource structure,
wherein the second subordinate resource structure is
configured for a second management command, and
wherein the third element is representative of a second
function for setting any of an execution state and execu-
tion mode of the second management command; and

10

20

25

35

40

45

55

65

86

performing REM of a M2M device or a M2M gateway

responsive to the second RESTful method.

2. The method of claim 1, wherein the M2M server and the
first management command are configured in accordance
with a first set of protocols, wherein the device management
server and device management command are configured in
accordance with a second set of protocols, and wherein the
second set of protocols comprises at least one protocol dif-
ferent from the first set of protocols.

3. The method of claim 1, wherein the second subordinate
resource structure facilitates REM of any of the M2M device
and the M2M gateway in accordance with a device manage-
ment layer.

4. The method of claim 1, wherein performing REM of a
M2M device or a M2M gateway comprises:

sending, to the M2M device or the M2M gateway, an

instruction to change any of a current execution state or
execution mode of the second management command in
accordance with the second function;

receiving, from the M2M device or the M2M gateway, a

response including information associated with chang-
ing any of the current execution state and the execution
mode of the second management command;
storing the information associated with changing any ofthe
current execution state and execution mode of the sec-
ond management command in a fourth element of the
second subordinate resource structure, wherein the
fourth element is linked to the third element; and

providing the information from the fourth element to the
M2M network application.

5. The method of claim 1, wherein the second subordinate
resource structure is associated with the M2M device or the
M2M gateway, and wherein performing REM of the M2M
device or the M2M gateway comprises sending, to the M2M
device or the M2M gateway from the M2M server, an instruc-
tion to change any of a current execution state or execution
mode of the second management command.

6. The method of claim 1, wherein the first and second
identifiers comprise uniform resource identifiers of the first
and third elements, respectively.

7. The method of claim 1, wherein any of the first, second
and third elements is a sub-resource or an attribute.

8. The method of claim 1, wherein each of the first and
second functions comprises any of a run function, a pause
function, a cancel function, and a resume function.

9. The method of claim 1, wherein each of the first and
second RESTful methods comprises at least one of a CRE-
ATE RESTful method, a RETRIEVE RESTful method, an
UPDATE RESTful method, and DELETE RESTful method.

10. The method of claim 1, wherein the first and second
M2M network applications are the same M2M network appli-
cation.

11. The method of claim 1, wherein the first and second
management commands are the same type of management
command.

12. The method of claim 11, wherein the first and second
subordinate resource structures are instantiated from a
resource structure template for the same type of management
command.

13. A method implemented in a machine-to-machine
(“M2M”) server, the M2M server having a service capability
(“SC”) for remote entity management (“REM”) and a REM
resource structure, the method comprising:

receiving, from a M2M network application, a first REST-

ful method including a first identifier that identifies a
first element of a first subordinate resource structure of
the REM resource structure, wherein the first subordi-

US 9,426,222 B2

87

nate resource structure is configured for a first manage-
ment command, and wherein the first element is repre-
sentative of a first function for setting any of an
execution state and execution mode of the first manage-
ment command;

creating an instance of the first subordinate resource struc-

ture;

translating the first function to a device management com-

mand for a device that is accessible via a device man-
agement server,

sending the device management command to the device

management server;

receiving, from the device management server, a response

including information associated with invoking the
device management command;
storing the information associated with invoking the device
management command in a second element of the
instance of the first subordinate resource structure;

providing the information from the second element to the
M2M network application;

receiving, from a second M2M network application, a sec-
ond RESTful method including a second identifier that
identifies a third element of a second subordinate
resource structure of the REM resource structure,
wherein the second subordinate resource structure is
configured for a second management command, and
wherein the third element is representative of a second
function for setting any of an execution state and execu-
tion mode of the second management command; and

performing REM of a M2M device or a M2M gateway
responsive to the second RESTful method.

14. The method of claim 13, wherein the first and second
identifiers comprise uniform resource identifiers of the first
and third elements, respectively.

15. The method of claim 13, wherein any of the first,
second and third elements is a sub-resource or an attribute.

16. The method of claim 13, wherein each of the first and
second functions comprises any of a run function, a pause
function, a cancel function, and a resume function.

17. The method of claim 13, wherein each of the first and
second RESTful methods comprises at least one of a CRE-
ATE RESTful method, a RETRIEVE RESTful method, an
UPDATE RESTful method, and DELETE RESTful method.

18. The method of claim 13, wherein creating an instance
of'the first subordinate resource structure comprises: creating
an instance of the first subordinate resource structure respon-
sive to the first RESTful method.

19. The method of claim 13, wherein the first and second
M2M network applications are the same M2M network appli-
cation.

20. The method of claim 13, wherein the first and second
management commands are the same type of management
command.

21. The method of claim 20, wherein the first and second
subordinate resource structures are instantiated from a
resource structure template for the same type of management
command.

22. A machine-to-machine (“M2M”) server configured
with a service capability for remote entity management
(“REM”) and with a REM resource structure, wherein the
M2M server comprises:

circuitry, including a processor and a memory storing

instructions executable by the procesor, configured to:
receive, from a first M2M network application, a first
RESTful method including a first identifier that identi-
fies a first element of a first subordinate resource struc-
ture of the REM resource structure, wherein the first

10

15

20

25

30

35

40

45

50

55

60

65

88

subordinate resource structure is configured for a first
management command, and wherein the first element is
representative of a first function for setting any of an
execution state and execution mode of the first manage-
ment command;

translate the first function to a device management com-

mand for a device that is accessible via a device man-
agement server,

send the device management command to the device man-

agement server,

receive, from the device management server, a response

including information associated with invoking the
device management command;

store the information associated with invoking the device

management command in a second element of the first
subordinate resource structure, wherein the second ele-
ment is linked to the first element;
provide the information from the second element to the
M2M network application;

receive, from a second M2M network application, a second
RESTful method including a second identifier that iden-
tifies a third element of a second subordinate resource
structure of the REM resource structure, wherein the
second subordinate resource structure is configured for a
second management command, and wherein the third
element is representative of a second function for setting
any of an execution state and execution mode of the
second management command; and

perform REM ofa M2M device or a M2M gateway respon-

sive to the second RESTful method.

23. The M2M server of claim 22, wherein the M2M server
and the first management command are configured in accor-
dance with a first set of protocols, wherein the device man-
agement server and device management command are con-
figured in accordance with a second set of protocols, and
wherein the second set of protocols comprises at least one
protocol different from the first set of protocols.

24. The M2M server of claim 22, wherein the second
subordinate resource structure facilitates REM of any of the
M2M device and the M2M gateway in accordance with a
device management layer.

25. The M2M server of claim 22, wherein the circuitry is
configured to perform REM of a M2M device or a M2M
gateway, at least in part, by:

sending, to the M2M device or the M2M gateway, an

instruction to change any of a current execution state or
execution mode of the second management command in
accordance with the second function;

receiving, from the M2M device or the M2M gateway, a

response including information associated with chang-
ing any of the current execution state and the execution
mode of the second management command;
storing the information associated with changing any ofthe
current execution state and execution mode of the sec-
ond management command in a fourth element of the
second subordinate resource structure, wherein the
fourth element is linked to the third element; and

providing the information from the fourth element to the
M2M network application.

26. The M2M server of claim 22, wherein:

the second subordinate resource structure is associated

with the M2M device or the M2M gateway; and

the circuitry is configured to perform the REM of the M2M

device or the M2M gateway, at least in part, by sending,
to the M2M device or the M2M gateway, an instruction
to change any of a current execution state or execution
mode of the second management command.

US 9,426,222 B2

89

27. The M2M server of claim 22, wherein the first and
second identifiers comprise a uniform resource identifiers of
the first and third elements, respectively.
28. The M2M server of claim 22, wherein any of the first,
second and third elements is a sub-resource or an attribute.
29. The M2M server of claim 22, wherein each of the first
and second functions comprises any of a run function, a pause
function, a cancel function, and a resume function.
30. The M2M server of claim 22, wherein each of the first
and second RESTful methods comprises at least one of a
CREATE RESTful method, a RETRIEVE RESTful method,
an UPDATE RESTful method, and DELETE RESTful
method.
31. The M2M server of claim 22, wherein the first and
second M2M network applications are the same M2M net-
work application.
32. The M2M server of claim 22, wherein the first and
second management commands are the same type of man-
agement command.
33. The M2M server of claim 32, wherein the first and
second subordinate resource structures are instantiated from a
resource structure template for the same type of management
command.
34. A machine-to-machine (“M2M”) server configured
with a service capability for remote entity management
(“REM”) and with a resource structure having a subordinate
REM resource structure, wherein the M2M server comprises:
circuitry, including a processor and a memory storing
instructions executable by the processor, configured to:

receive, from a M2M network application, a RESTful
method including an identifier that identifies a first ele-
ment of afirst subordinate resource structure of the REM
resource structure, wherein the first subordinate
resource structure is configured for a first management
command, and wherein the first element is representa-
tive of a first function for setting any of an execution state
and execution mode of the first management command;

create an instance of the first subordinate resource struc-
ture;

translate the first function to a device management com-

mand for a device that is accessible via a device man-
agement server,

send the device management command to the device man-

agement server,

receive, from the device management server, a response

including information associated with invoking the
device management command;

90

store the information associated with invoking the device
management command in a second element of the
instance of the first subordinate resource structure;

provide the information from the second element to the
M2M network application;

receive, from a second M2M network application, a second
RESTful method including a second identifier that iden-
tifies a third element of a second subordinate resource
structure of the REM resource structure, wherein the
second subordinate resource structure is configured for a
second management command, and wherein the third
element is representative of a second function for setting
any of an execution state and execution mode of the
second management command; and

w

10

15
perform REM ofa M2M device or a M2M gateway respon-

sive to the second RESTful method.

35. The M2M server of claim 34, wherein the first and
second identifiers comprise uniform resource identifiers of
the first and third elements, respectively.

36. The M2M server of claim 34, wherein any of the first,
second and third elements comprises a sub-resource or an
attribute.

37. The M2M server of claim 34, wherein each of the first
and second functions comprises any of a run function, a pause
function, a cancel function, and a resume function.

38. The M2M server of claim 34, wherein each of the first
and second RESTful methods comprises at least one of a
CREATE RESTful method, a RETRIEVE RESTful method,
an UPDATE RESTful method, and DELETE RESTful
method.

39. The M2M server of claim 34, wherein the circuitry is
configured to create the instance of the first subordinate
resource structure responsive to the RESTful method.

40. The M2M server of claim 34, wherein the first and
second M2M network applications are the same M2M net-
work application.

41. The M2M server of claim 34, wherein the first and
second management commands are the same type of man-
agement command.

42. The M2M server of claim 41, wherein the first and
second subordinate resource structures are instantiated from a
resource structure template for the same type of management
command.

20

25

30

35

40

45

